28 resultados para recombinant allophycocyanin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last few years, significant advances have been made in understanding how a yeast cell responds to the stress of producing a recombinant protein, and how this information can be used to engineer improved host strains. The molecular biology of the expression vector, through the choice of promoter, tag and codon optimization of the target gene, is also a key determinant of a high-yielding protein production experiment. Recombinant Protein Production in Yeast: Methods and Protocols examines the process of preparation of expression vectors, transformation to generate high-yielding clones, optimization of experimental conditions to maximize yields, scale-up to bioreactor formats and disruption of yeast cells to enable the isolation of the recombinant protein prior to purification. Written in the highly successful Methods in Molecular Biology™ series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several host systems are available for the production of recombinant proteins, ranging from Escherichia coli to mammalian cell-lines. This article highlights the benefits of using yeast, especially for more challenging targets such as membrane proteins. On account of the wide range of molecular, genetic, and microbiological tools available, use of the well-studied model organism, Saccharomyces cerevisiae, provides many opportunities to optimize the functional yields of a target protein. Despite this wealth of resources, it is surprisingly under-used. In contrast, Pichia pastoris, a relative new-comer as a host organism, is already becoming a popular choice, particularly because of the ease with which high biomass (and hence recombinant protein) yields can be achieved. In the last few years, advances have been made in understanding how a yeast cell responds to the stress of producing a recombinant protein and how this information can be used to identify improved host strains in order to increase functional yields. Given these advantages, and their industrial importance in the production of biopharmaceuticals, I argue that S. cerevisiae and P. pastoris should be considered at an early stage in any serious strategy to produce proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over 50% of clinically-marketed drugs target membrane proteins; in particular G protein-coupled receptors (GPCRs). GPCRs are vital to living cells, performing an active role in many processes, making them integral to drug development. In nature, GPCRs are not sufficiently abundant for research and their structural integrity is often lost during extraction from cell membranes. The objectives of this thesis were to increase recombinant yield of the GPCR, human adenosine A2A receptor (hA2AR) by investigating bioprocess conditions in large-scale Pichia pastoris and small-scale Saccharomyces cerevisiae cultivations. Extraction of hA2AR from membranes using novel polymers was also investigated. An increased yield of hA2AR from P. pastoris was achieved by investigating the methanol feeding regime. Slow, exponential feed during induction (μlow) was compared to a faster, exponential feed (μhigh) in 35 L pilot-scale bioreactors. Overall hA2AR yields were increased for the μlow cultivation (536.4pmol g-1) compared to the μhigh148.1 pmol g-1. hA2AR levels were maintained in cytotoxic methanol conditions and unexpectedly, pre-induction levels of hA2AR were detected. Small-scale bioreactor work showed that Design of Experiments (DoE) could be applied to screen for bioprocess conditions to give optimal hA2AR yields. Optimal conditions were retrieved for S. cerevisiae using a d-optimal screen and response surface methodology. The conditions were 22°C, pH 6.0, 30% DO without dimethyl sulphoxide. A polynomial equation was generated to predict hA2AR yields if conditions varied. Regarding the extraction, poly (maleic anhydride-styrene) or PMAS was successful in solubilising hA2AR from P. pastoris membranes compared with dodcecyl-β-D-maltoside (DDM) detergent. Variants of PMAS worked well as solubilising agents with either 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or cholesteryl hemisuccinate (CHS). Moreover, esterification of PMAS improved solubilisation, suggesting that increased hydrophobicity stabilises hA2AR during extraction. Overall, hA2AR yields were improved in both, P. pastoris and S. cerevisiae and the use of novel polymers for efficient extraction was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background - Pichia pastoris is a widely-used host for recombinant protein production; expression is typically driven by methanol-inducible alcohol oxidase (AOX) promoters. Recently this system has become an important source of recombinant G protein-coupled receptors (GPCRs) for structural biology and drug discovery. The influence of diverse culture parameters (such as pH, dissolved oxygen concentration, medium composition, antifoam concentration and culture temperature) on productivity has been investigated for a wide range of recombinant proteins in P. pastoris. In contrast, the impact of the pre-induction phases on yield has not been as closely studied. In this study, we examined the pre-induction phases of P. pastoris bioreactor cultivations producing three different recombinant proteins: the GPCR, human A2a adenosine receptor (hA2aR), green fluorescent protein (GFP) and human calcitonin gene-related peptide receptor component protein (as a GFP fusion protein; hCGRP-RCP-GFP). Results - Functional hA2aR was detected in the pre-induction phases of a 1 L bioreactor cultivation of glycerol-grown P. pastoris. In a separate experiment, a glycerol-grown P. pastoris strain secreted soluble GFP prior to methanol addition. When glucose, which has been shown to repress AOX expression, was the pre-induction carbon source, hA2aR and GFP were still produced in the pre-induction phases. Both hA2aR and GFP were also produced in methanol-free cultivations; functional protein yields were maintained or increased after depletion of the carbon source. Analysis of the pre-induction phases of 10 L pilot scale cultivations also demonstrated that pre-induction yields were at least maintained after methanol induction, even in the presence of cytotoxic concentrations of methanol. Additional bioreactor data for hCGRP-RCP-GFP and shake-flask data for GFP, horseradish peroxidase (HRP), the human tetraspanins hCD81 and CD82, and the tight-junction protein human claudin-1, demonstrated that bioreactor but not shake flask cultivations exhibit recombinant protein production in the pre-induction phases of P. pastoris cultures. Conclusions - The production of recombinant hA2aR, GFP and hCGRP-RCP-GFP can be detected in bioreactor cultivations prior to methanol induction, while this is not the case for shake-flask cultivations of GFP, HRP, hCD81, hCD82 and human claudin-1. This confirms earlier suggestions of leaky expression from AOX promoters, which we report here for both glycerol- and glucose-grown cells in bioreactor cultivations. These findings suggest that the productivity of AOX-dependent bioprocesses is not solely dependent on induction by methanol. We conclude that in order to maximize total yields, pre-induction phase cultivation conditions should be optimized, and that increased specific productivity may result in decreased biomass yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological processes are subject to the influence of numerous factors and their interactions, which may be non-linear in nature. In a recombinant protein production experiment, understanding the relative importance of these factors, and their influence on the yield and quality of the recombinant protein being produced, is an essential part of its optimisation. In many cases, implementing a design of experiments (DoE) approach has delivered this understanding. This chapter aims to provide the reader with useful pointers in applying a DoE strategy to improve the yields of recombinant yeast cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Having access to suitably stable, functional recombinant protein samples underpins diverse academic and industrial research efforts to understand the workings of the cell in health and disease. Synthesising a protein in recombinant host cells typically allows the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to the native human source cells of many proteins of interest, while also being quick, easy, and cheap to grow and process. Even in these cells the production of some proteins can be plagued by low functional yields. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast cell factories. In this chapter, we provide an overview of the opportunities available to improve yeast as a host system for recombinant protein production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately 60% of pharmaceuticals target membrane proteins; 30% of the human genome codes for membrane proteins yet they represent less than 1% of known unique crystal structures deposited in the Protein Data Bank (PDB), with 50% of structures derived from recombinant membrane proteins having been synthesized in yeasts. G protein-coupled receptors (GPCRs) are an important class of membrane proteins that are not naturally abundant in their native membranes. Unfortunately their recombinant synthesis often suffers from low yields; moreover, function may be lost during extraction and purification from cell membranes, impeding research aimed at structural and functional determination. We therefore devised two novel strategies to improve functional yields of recombinant membrane proteins in the yeast Saccharomyces cerevisiae. We used human adenosine A2A receptor (hA2AR) as a model GPRC since it is functionally and structurally well characterised.In the first strategy, we investigated whether it is possible to provide yeast cells with a selective advantage (SA) in producing the fusion protein hA2AR-Ura3p when grown in medium lacking uracil; Ura3p is a decarboxylase that catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, generating uridine monophosphate. The first transformant (H1) selected using the SA strategy gave high total yields of hA2AR-Ura3p, but low functional yields as determined by radio-ligand binding, leading to the discovery that the majority of the hA2AR-Ura3p had been internalized to the vacuole. The yeast deletion strain spt3Δ is thought to have slower translation rates and improved folding capabilities compared to wild-type cells and was therefore utilised for the SA strategy to generate a second transformant, SU1, which gave higher functional yields than H1. Subsequently hA2AR-Ura3p from H1 was solubilised with n-dodecyl-β-D-maltoside and cholesteryl hemisuccinate, which yielded functional hA2AR-Ura3p at the highest yield of all approaches used. The second strategy involved using knowledge of translational processes to improve recombinant protein synthesis to increase functional yield. Modification of existing expression vectors with an internal ribosome entry site (IRES) inserted into the 5ˊ untranslated region (UTR) of the gene encoding hA2AR was employed to circumvent regulatory controls on recombinant synthesis in the yeast host cell. The mechanisms involved were investigated through the use of yeast deletion strains and drugs that cause translation inhibition, which is known to improve protein folding and yield. The data highlight the potential to use deletion strains to increase IRES-mediated expression of recombinant hA2AR. Overall, the data presented in this thesis provide mechanistic insights into two novel strategies that can increase functional membrane protein yields in the eukaryotic microbe, S. cerevisiae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant human DNase (rhDNase) is an established treatment in cystic fibrosis (CF), but it may liberate cationic mediators bound to DNA in the airways. An alternative mucolytic therapy is hypertonic saline (HS); however, HS may potentiate neutrophilic inflammation. We compared the effect of rhDNase and HS on cationic proinflammatory mediators in CF sputum. In a randomized, crossover trial, 48 children with CF were allocated consecutively to 12 weeks of once-daily 2.5 mg rhDNase, alternate-day 2.5 mg rhDNase, and twice-daily 7% HS. Sputum levels of total interleukin-8 (IL-8), free IL-8, myeloperoxidase, eosinophil cationic protein, and neutrophil elastase (NE) activity were measured before and after each treatment. The change in mediator levels from baseline with daily rhDNase and HS was not significant; however, with alternate-day rhDNase, there was an increase in free IL-8. When changes in mediator levels with daily rhDNase were compared with alternate-day rhDNase and HS, no significant differences were detected. Only changes in NE activity were associated with changes in lung function. In summary, we were unable to show that rhDNase or HS promote airway inflammation in CF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A natural glycoprotein usually exists as a spectrum of glycosylated forms, where each protein molecule may be associated with an array of oligosaccharide structures. The overall range of glycoforms can have a variety of different biophysical and biochemical properties, although details of structure–function relationships are poorly understood, because of the microheterogeneity of biological samples. Hence, there is clearly a need for synthetic methods that give access to natural and unnatural homogeneously glycosylated proteins. The synthesis of novel glycoproteins through the selective reaction of glycosyl iodoacetamides with the thiol groups of cysteine residues, placed by site-directed mutagenesis at desired glycosylation sites has been developed. This provides a general method for the synthesis of homogeneously glycosylated proteins that carry saccharide side chains at natural or unnatural glycosylation sites. Here, we have shown that the approach can be applied to the glycoprotein hormone erythropoietin, an important therapeutic glycoprotein with three sites of N-glycosylation that are essential for in vivo biological activity. Results: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His10-WThEPO, His10-Asn24Cys, His10-Asn38Cys, His10-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l−1 from Escherichia coli. Chemical glycosylation with glycosyl-β-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. Conclusions: Erythropoietin expressed in E. coli bearing specific Asn→Cys mutations at natural glycosylation sites can be glycosylated using β-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins. Results: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His10-WThEPO, His10-Asn24Cys, His10-Asn38Cys, His10-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l−1 from Escherichia coli. Chemical glycosylation with glycosyl-β-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. Conclusions: Erythropoietin expressed in E. coli bearing specific Asn→Cys mutations at natural glycosylation sites can be glycosylated using β-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives Recombinant protein subunit vaccines are formulated using protein antigens that have been synthesized in heterologous host cells. Several host cells are available for this purpose, ranging from Escherichia coli to mammalian cell lines. This article highlights the benefits of using yeast as the recombinant host. Key findings The yeast species, Saccharomyces cerevisiae and Pichia pastoris, have been used to optimize the functional yields of potential antigens for the development of subunit vaccines against a wide range of diseases caused by bacteria and viruses. Saccharomyces cerevisiae has also been used in the manufacture of 11 approved vaccines against hepatitis B virus and one against human papillomavirus; in both cases, the recombinant protein forms highly immunogenic virus-like particles. Summary Advances in our understanding of how a yeast cell responds to the metabolic load of producing recombinant proteins will allow us to identify host strains that have improved yield properties and enable the synthesis of more challenging antigens that cannot be produced in other systems. Yeasts therefore have the potential to become important host organisms for the production of recombinant antigens that can be used in the manufacture of subunit vaccines or in new vaccine development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a 'cell factory' each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies.