39 resultados para radio-frequency identification (RFID)
Resumo:
Radio-frequency identification technology (RFID) is a popular modern technology proven to deliver a range of value-added benefits to achieve system and operational efficiency, as well as cost-effectiveness. The operational characteristics of RFID outperform barcodes in many aspects. Despite its well-perceived benefits, a definite rationale for larger scale adoption is still not so promising. One of the key reasons is high implementation cost, especially the cost of tags for applications involving item-level tagging. This has resulted in the development of chipless RFID tags which cost much less than conventional chip-based tags. Despite the much lower tag cost, the uptake of chipless RFID system in the market is still not as widespread as predicted by RFID experts. This chapter explores the value-added applications of chipless RFID system to promote wider adoption. The chipless technology's technical and operational characteristics, benefits, limitations and current uses will also be examined. The merit of this chapter is to contribute fresh propositions to the promising applications of chipless RFID to increase its adoption in the industries that are currently not (or less popular in) utilising it, such as retail, logistics, manufacturing, healthcare, and service sectors. © 2013, IGI Global.
Resumo:
Radio-frequency identification technology (RFID) is a popular modern technology proven to deliver a range of value-added benefits to achieve system and operational efficiency, as well as cost-effectiveness. The operational characteristics of RFID outperform barcodes in many aspects. One of the main challenges for RFID adoption is proving its ability to improve competitiveness. In this paper, we examine multiple real-world examples where RFID technology has been demonstrated to provide significant benefits to industry competitiveness, and also to enhance human experience in the service sector. This paper will explore and survey existing value-added applications of RFID systems in industry and the service sector, with particular focus on applications in retail, logistics, manufacturing, healthcare, leisure and the public sector. © 2012 AICIT.
Resumo:
The following thesis describes the computer modelling of radio frequency capacitively coupled methane/hydrogen plasmas and the consequences for the reactive ion etching of (100) GaAs surfaces. In addition a range of etching experiments was undertaken over a matrix of pressure, power and methane concentration. The resulting surfaces were investigated using X-ray photoelectron spectroscopy and the results were discussed in terms of physical and chemical models of particle/surface interactions in addition to the predictions for energies, angles and relative fluxes to the substrate of the various plasma species. The model consisted of a Monte Carlo code which followed electrons and ions through the plasma and sheath potentials whilst taking account of collisions with background neutral gas molecules. The ionisation profile output from the electron module was used as input for the ionic module. Momentum scattering interactions of ions with gas molecules were investigated via different models and compared against results given by quantum mechanical code. The interactions were treated as central potential scattering events and the resulting neutral cascades were followed. The resulting predictions for ion energies at the cathode compared well to experimental ion energy distributions and this verified the particular form of the electrical potentials used and their applicability in the particular geometry plasma cell used in the etching experiments. The final code was used to investigate the effect of external plasma parameters on the mass distribution, energy and angles of all species impingent on the electrodes. Comparisons of electron energies in the plasma also agreed favourably with measurements made using a Langmuir electric probe. The surface analysis showed the surfaces all to be depleted in arsenic due to its preferential removal and the resultant Ga:As ratio in the surface was found to be directly linked to the etch rate. The etch rate was determined by the methane flux which was predicted by the code.
Resumo:
In recent years the increased interest in introducing radio frequency technology (RFID) in warehousing was observed. First adopters of RFID reported numerous benefits, which included: reduced shrinkage, real-time tracking and better accuracy of data collection. Along with the academic and industrial discussion on benefits which can be achieved in RFID enabled warehouses there are reports on issues related to adoption of RFID technology in warehousing. This paper reviews results of scientific reports of RFID implementation in warehouses and discusses the adoption barriers and causes of not achieving full potential of the technology. Following adoption barriers are identified and set in warehousing context: lack of forseeable return on investment (ROI), unreliable performance of RFID systems, standarisation, integration with legacy systems and privacy/security concerns. As more studies will address these challenges, the realisation of RFID benefits for warehouses will become reality.
Resumo:
We propose a new approach to the generation of an alphabet for secret key exchange relying on small variations in the cavity length of an ultra-long fiber laser. This new concept is supported by experimental results showing how the radio-frequency spectrum of the laser can be exploited as a carrier to exchange information. The test bench for our proof of principle is a 50 km-long fiber laser linking two users, Alice and Bob, where each user can randomly add an extra 1 km-long segment of fiber. The choice of laser length is driven by two independent random binary values, which makes such length become itself a random variable. The security of key exchange is ensured whenever the two independent random choices lead to the same laser length and, hence, to the same free spectral range.
Resumo:
We propose a new approach for secret key exchange involving the variation of the cavity length of an ultra-long fibre laser. The scheme is based on the realisation that the free spectral range of the laser cavity can be used as an information carrier. We present a proof-of-principle demonstration of this new concept using a 50-km-long fibre laser to link two users, both of whom can randomly add an extra 1-km-long fibre segment.
Resumo:
The development of sensing devices is one of the instrumentation fields that has grown rapidly in the last decade. Corresponding to the swift advance in the development of microelectronic sensors, optical fibre sensors are widely investigated because of their advantageous properties over the electronics sensors such as their wavelength multiplexing capability and high sensitivity to temperature, pressure, strain, vibration and acoustic emission. Moreover, optical fibre sensors are more attractive than the electronics sensors as they can perform distributed sensing, in terms of covering a reasonably large area using a single piece of fibre. Apart from being a responsive element in the sensing field, optical fibre possesses good assets in generating, distributing, processing and transmitting signals in the future broadband information network. These assets include wide bandwidth, high capacity and low loss that grant mobility and flexibility for wireless access systems. Among these core technologies, the fibre optic signal processing and transmission of optical and radio frequency signals have been the subjects of study in this thesis. Based on the intrinsic properties of single-mode optical fibre, this thesis aims to exploit the fibre characteristics such as thermal sensitivity, birefringence, dispersion and nonlinearity, in the applications of temperature sensing and radio-over-fibre systems. By exploiting the fibre thermal sensitivity, a fully distributed temperature sensing system consisting of an apodised chirped fibre Bragg grating has been implemented. The proposed system has proven to be efficient in characterising grating and providing the information of temperature variation, location and width of the heat source applied in the area under test.To exploit the fibre birefringence, a fibre delay line filter using a single high-birefringence optical fibre structure has been presented. The proposed filter can be reconfigured and programmed by adjusting the input azimuth of launched light, as well as the strength and direction of the applied coupling, to meet the requirements of signal processing for different purposes in microwave photonic and optical filtering applications. To exploit the fibre dispersion and nonlinearity, experimental investigations have been carried out to study their joint effect in high power double-sideband and single-sideband modulated links with the presence of fibre loss. The experimental results have been theoretically verified based on the in-house implementation of the split-step Fourier method applied to the generalised nonlinear Schrödinger equation. Further simulation study on the inter-modulation distortion in two-tone signal transmission has also been presented so as to show the effect of nonlinearity of one channel on the other. In addition to the experimental work, numerical simulations have also been carried out in all the proposed systems, to ensure that all the aspects concerned are comprehensively investigated.
Resumo:
Spread spectrum systems make use of radio frequency bandwidths which far exceed the minimum bandwidth necessary to transmit the basic message information.These systems are designed to provide satisfactory communication of the message information under difficult transmission conditions. Frequency-hopped multilevel frequency shift keying (FH-MFSK) is one of the many techniques used in spread spectrum systems. It is a combination of frequency hopping and time hopping. In this system many users share a common frequency band using code division multiplexing. Each user is assigned an address and the message is modulated into the address. The receiver, knowing the address, decodes the received signal and extracts the message. This technique is suggested for digital mobile telephony. This thesis is concerned with an investigation of the possibility of utilising FH-MFSK for data transmission corrupted by additive white gaussian noise (A.W.G.N.). Work related to FH-MFSK has so far been mostly confined to its validity, and its performance in the presence of A.W.G.N. has not been reported before. An experimental system was therefore constructed which utilised combined hardware and software and operated under the supervision of a microprocessor system. The experimental system was used to develop an error-rate model for the system under investigation. The performance of FH-MFSK for data transmission was established in the presence of A.W.G.N. and with deleted and delayed sample effects. Its capability for multiuser applications was determined theoretically. The results show that FH-MFSK is a suitable technique for data transmission in the presence of A.W.G.N.
Resumo:
A novel high-frequency fiber Bragg grating (FBG) sensing interrogation system by using fiber Sagnac-loop-based microwave photonic filtering is proposed and experimentally demonstrated. By adopting the microwave photonic filtering, the wavelength shift of sensing FBG can be converted into amplitude variation of the modulated electronic radio-frequency (RF) signal. In the experiment, the strain applied onto the sensing FBG has been demodulated by measuring the intensity of the recovered RF signal, and by modulating the RF signal with different frequencies, different interrogation sensitivities can be achieved.
Resumo:
This article proposes a frequency agile antenna whose operating frequency band can be switched. The design is based on a Vivaldi antenna. High-performance radio-frequency microelectromechanical system (RF-MEMS) switches are used to realize the 2.7 GHz and 3.9 GHz band switching. The low band starts from 2.33 GHz and works until 3.02 GHz and the high band ranges from 3.29 GHz up to 4.58 GHz. The average gains of the antenna at the low and high bands are 10.9 and 12.5 dBi, respectively. This high-gain frequency reconfigurable antenna could replace several narrowband antennas for reducing costs and space to support multiple communication systems, while maintaining good performance.
Resumo:
We describe a novel technique to provide demultiplexing of fiber Bragg grating sensors, interrogated using interferometric wavelength shift detection. Amplitude modulation of multiple radio frequency driving signals allows an acoustooptic tunable filter to provide wavelength demultiplexing. We demonstrated a noise limited strain resolution of 150 nanostrain/v(Hz) and a crosstalk better than -50 dB.
Exploring civil servant resistance to M-government:a story of transition and opportunities in Turkey
Resumo:
The concept of mobility, related to technology in particular, has evolved dramatically over the last two decades including: (i) hardware ranging from walkmans to Ipods, laptops to netbooks, PDAs to 3G mobile phone; (ii) software supporting multiple audio and video formats driven by ubiquitous mobile wireless access, WiMax, automations such as radio frequency ID tracking and location aware services. Against the background of increasing budget deficit, along with the imperative for efficiency gains, leveraging ICT and mobility promises for work related tasks, in a public administration context, in emerging markets, point to multiple possible paths. M-government transition involve both technological changes and adoption to deliver government services differently (e.g. 24/7, error free, anywhere to the same standards) but also the design of digital strategies including possibly competing m-government models, the re-shaping of cultural practices, the creation of m-policies and legislations, the structuring of m-services architecture, and progress regarding m-governance. While many emerging countries are already offering e-government services and are gearing-up for further m-government activities, little is actually known about the resistance that is encountered, as a reflection of civil servants' current standing, before any further macro-strategies are deployed. Drawing on the resistance and mobility literature, this chapter investigates how civil servants' behaviors, in an emerging country technological environment, through their everyday practice, react and resist the influence of m-government transition. The findings points to four main type of resistance namely: i) functional resistance; ii) ideological resistance; iii) market driven resistance and iv) geographical resistance. Policy implication are discussed in the specific context of emerging markets. © 2011, IGI Global.
Resumo:
The future broadband information network will undoubtedly integrate the mobility and flexibility of wireless access systems with the huge bandwidth capacity of photonics solutions to enable a communication system capable of handling the anticipated demand for interactive services. Towards wide coverage and low cost implementations of such broadband wireless photonics communication networks, various aspects of the enabling technologies are continuingly generating intense research interest. Among the core technologies, the optical generation and distribution of radio frequency signals over fibres, and the fibre optic signal processing of optical and radio frequency signals, have been the subjects for study in this thesis. Based on the intrinsic properties of single-mode optical fibres, and in conjunction with the concepts of optical fibre delay line filters and fibre Bragg gratings, a number of novel fibre-based devices, potentially suitable for applications in the future wireless photonics communication systems, have been realised. Special single-mode fibres, namely, the high birefringence (Hi-Bi) fibre and the Er/Yb doped fibre have been employed so as to exploit their merits to achieve practical and cost-effective all-fibre architectures. A number of fibre-based complex signal processors for optical and radio frequencies using novel Hi-Bi fibre delay line filter architectures have been illustrated. In particular, operations such as multichannel flattop bandpass filtering, simultaneous complementary outputs and bidirectional nonreciprocal wavelength interleaving, have been demonstrated. The proposed configurations featured greatly reduced environmental sensitivity typical of coherent fibre delay line filter schemes, reconfigurable transfer functions, negligible chromatic dispersions, and ease of implementation, not easily achievable based on other techniques. A number of unique fibre grating devices for signal filtering and fibre laser applications have been realised. The concept of the superimposed fibre Bragg gratings has been extended to non-uniform grating structures and into Hi-Bi fibres to achieve highly useful grating devices such as overwritten phase-shifted fibre grating structure and widely/narrowly spaced polarization-discriminating filters that are not limited by the intrinsic fibre properties. In terms of the-fibre-based optical millimetre wave transmitters, unique approaches based on fibre laser configurations have been proposed and demonstrated. The ability of the dual-mode distributed feedback (DFB) fibre lasers to generate high spectral purity, narrow linewidth heterodyne signals without complex feedback mechanisms has been illustrated. A novel co-located dual DFB fibre laser configuration, based on the proposed superimposed phase-shifted fibre grating structure, has been further realised with highly desired operation characteristics without the need for costly high frequency synthesizers and complex feedback controls. Lastly, a novel cavity mode condition monitoring and optimisation scheme for short length, linear-cavity fibre lasers has been proposed and achieved. Based on the concept and simplicity of the superimposed fibre laser cavities structure, in conjunction with feedback controls, enhanced output performances from the fibre lasers have been achieved. The importance of such cavity mode assessment and feedback control for optimised fibre laser output performance has been illustrated.
Resumo:
We analyze the physical mechanisms limiting optical fiber resonator length and report on the longest ever laser cavity, reaching 270 km, which shows a clearly resolvable mode structure with a width of ~120??Hz and peak separation of ~380Hz in the radio-frequency spectrum.