25 resultados para projected targets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The receptor activity-modifying protein (RAMP) family of membrane proteins regulates G protein-coupled receptor (GPCR) function in several ways. RAMPs can alter their pharmacology and signalling as well as the trafficking of these receptors to and from the cell surface. Accordingly, RAMPs may be exploited as drug targets, offering new opportunities for regulating the function of therapeutically relevant RAMP-interacting GPCRs. For example, several small molecule antagonists of RAMP1/ calcitonin receptor-like receptor complexes, which block the actions of the neuropeptide calcitonin gene-related peptide are in development for the treatment of migraine headache.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysac-charide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor- production, IB degradation, p38 MAPK phosphorylation, and NF-B-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I·C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from 30 µM. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of vaccines can be greatly improved by the addition of adjuvants, which enhance and modify immune responses. Historically, adjuvants have been discovered empirically by using experimental models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system and point-spread function of nanoparticles within the target was measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Global Partnership for Effective Diabetes Management, established to provide practical guidance to improve patient outcomes in diabetes, has developed and modified recommendations to improve glycaemic control in type 2 diabetes. The Global Partnership advocates an individualized therapeutic approach and, as part of the process to customize therapy, has previously identified specific type 2 diabetes patient subgroups that require special consideration. This article builds on earlier publications, expanding the scope of practical guidance to include newly diagnosed individuals with complications and women with diabetes in pregnancy. Good glycaemic control remains the cornerstone of managing type 2 diabetes, and plays a vital role in preventing or delaying the onset and progression of diabetic complications. Individualizing therapeutic goals and treatments to meet glycaemic targets safely and without delay remains paramount, in addition to a wider programme of care to reduce cardiovascular risk factors and improve patient outcomes. © The Author(s) 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system and point-spread function of nanoparticles within the target was measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterogeneous datasets arise naturally in most applications due to the use of a variety of sensors and measuring platforms. Such datasets can be heterogeneous in terms of the error characteristics and sensor models. Treating such data is most naturally accomplished using a Bayesian or model-based geostatistical approach; however, such methods generally scale rather badly with the size of dataset, and require computationally expensive Monte Carlo based inference. Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential Bayesian framework for inference in such projected processes is presented. The observations are considered one at a time which avoids the need for high dimensional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part of the INTAMAP web service, is introduced which implements projected, sequential estimation and adds several novel features. In particular the library includes the ability to use a generic observation operator, or sensor model, to permit data fusion. It is also possible to cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the covariance parameters is explored, including the impact of the projected process approximation on likelihood profiles. We illustrate the projected sequential method in application to synthetic and real datasets. Limitations and extensions are discussed. © 2010 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter explores the potential for electric vehicles to contribute to decarbonising surface transport. Decarbonising transport is a major global challenge-meeting CO2 emissions reduction targets for 2050, with a rapidly growing, and urbanising global population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fibroblast growth factor (FGF) family consists of 22 evolutionarily and structurally related proteins (FGF1 to FGF23; with FGF15 being the rodent ortholog of human FGF19). Based on their mechanism of action, FGFs can be categorized into intracrine, autocrine/paracrine and endocrine subgroups. Both autocrine/paracrine and endocrine FGFs are secreted from their cells of origin and exert their effects on target cells by binding to and activating specific single-pass transmembrane tyrosine kinase receptors (FGFRs). Moreover, FGF binding to FGFRs requires specific cofactors, namely heparin/heparan sulfate proteoglycans or Klothos for autocrine/paracrine and endocrine FGF signaling, respectively. FGFs are vital for embryonic development and mediate a broad spectrum of biological functions, ranging from cellular excitability to angiogenesis and tissue regeneration. Over the past decade certain FGFs (e.g. FGF1, FGF10, FGF15/FGF19 and FGF21) have been further recognized as regulators of energy homeostasis, metabolism and adipogenesis, constituting novel therapeutic targets for obesity and obesity-related cardiometabolic disease. Until recently, translational research has been mainly focused on FGF21, due to the pleiotropic, beneficial metabolic actions and the relatively benign safety profile of its engineered variants. However, increasing evidence regarding the role of additional FGFs in the regulation of metabolic homeostasis and recent developments regarding novel, engineered FGF variants have revitalized the research interest into the therapeutic potential of certain additional FGFs (e.g. FGF1 and FGF15/FGF19). This review presents a brief overview of the FGF family, describing the mode of action of the different FGFs subgroups, and focuses on FGF1 and FGF15/FGF19, which appear to also represent promising new targets for the treatment of obesity and type 2 diabetes.