47 resultados para polystyrene


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to increase our knowledge of the nature of the surface properties of polymeric materials and improve our understanding of how these factors influence the deposition of proteins to form a reactive biological/synthetic interface. A number of surface analytical techniques were identified as being of potential benefit to this investigation and included in a multidisciplinary research program. Cell adhesion in culture was the primary biological sensor of surface properties, and it showed that the cell response to different materials can be modified by adhesion promoting protein layers: cell adhesion is a protein-mediated event. A range of surface rugosity can be produced on polystyrene, and the results presented here show that surface rugosity does not play a major role in determining a material's cell adhesiveness. Contact angle measurements showed that surface energy (specifically the polar fraction) is important in promoting cell spreading on surfaces. The immunogold labelling technique indicated that there were small, but noticeable differences, between the distribution of proteins on a range of surfaces. This study has shown that surface analysis techniques have different sensitivities in terms of detection limits and depth probed, and these are important in determining the usefulness of the information obtained. The techniques provide information on differing aspects of the biological/synthetic interface, and the consequence of this is that a range of techniques is needed in any full study of such a complex field as the biomaterials area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combined bioreaction separation studies have been carried out for the first time on a moving port semi-continuous counter-current chromatographic reactor-separator (SCCR-S1) consisting of twelve 5.4cm id x 75cm long columns packed with calcium charged cross-linked polystyrene resin (KORELA V07C). The inversion of sucrose to glucose and fructose in the presence of the enzyme invertase and the biochemIcal synthesis of dextran and fructose from sucrose in the presence of the enzyme dextransucrase were investigated. A dilute stream of the appropriate enzyme in deionised water was used as the eluent stream. The effect of switch time, feed concentration, enzyme activity, eluent rate and enzyme to feed concentration ratio on the combined bioreaction-separation were investigated. For the invertase reaction, at 20.77% w/v sucrose feed concentrations complete conversions were achieved. The enzyme usage was 34% of the theoretical enzyme amount needed to convert an equivalent amount of sucrose over the same time period when using a conventional fermenter. The fructose rich (FRP) and glucose rich (GRP) product purities obtained were over 90%. By operating at 35% w/v sucrose feed concentration and employing the product splitting and recycling techniques, the total concentration and purity of the GRP increased from 32% w/v to 4.6% and from 92.3% to 95% respectively. The FRP concentration also increased from 1.82% w/v to 2.88% w/v. A mathematical model was developed for the combined reaction-separation and used to simulate the continuous inversion of sucrose and product separation using the SCCR-S1. In the biosynthesis of dextran studies, 52% conversion of a 2% w/v sucrose concentration feed was achieved. An average dextran molecular weight of 4 millIon was obtained in the dextran rich (DRP) product stream. The enzyme dextransucrase was purifed successfully using centrifugation and ultrafiltration techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review of the general chromatographic theory and of continuous chromatographic techniques has been carried out. Three methods of inversion of sucrose to glucose and fructose in beet molasses were explored. These methods were the inversion of sucrose using the enzyme invertase, by the use of hydrochloric acid and the use of the resin Amberlite IR118 in the H+ form. The preferred method on economic and purity considerations was by the use of the enzyme invertase. The continuous chromatographic separation of inverted beet molasses resulting in a fructose rich product and a product containing glucose and other non-sugars was carried out using a semi-continuous counter-current chromatographic refiner (SCCR6), consisting of ten 10.8cm x 75cm long stainless steel columns packed with a calcium charged 8% cross-linked polystyrene resin Zerolit SRC 14. Based on the literature this is the first time such a continuous separation has been attempted. It was found that the cations present in beet molasses displaced the calcium ions from the resin resulting in poor separation of the glucose and fructose. Three methods of maintaining the calcium form of the resin during the continuous operation of the equipment were established. Passing a solution of calcium nitrate through the purge column for half a switch period was found to be most effective as there was no contamination of the main fructose rich product and the product concentrations were increased by 50%. When a 53% total solids (53 Brix) molasses feedstock was used, the throughput was 34.13kg sugar solids per m3 of resin per hour. Product purities of 97% fructose in fructose rich (FRP) and 96% glucose in the glucose rich (GRP) products were obtained with product concentrations of 10.93 %w/w for the FRP and 10.07 %w/w for the GRP. The effects of flowrates, temperature and background sugar concentration on the distribution coefficients of fructose, glucose, betaine and an ionic component of beet molasses were evaluated and general relationships derived. The computer simulation of inverted beet molasses separations on an SCCR system has been carried out successfully.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface nature of Acanthamoeba trophozoites and cysts was investigated with respect to cell surface charge, hydrophobicity and surface carbohydrate composition. Particulate microelectrophoresis revealed a marked negative charge for both morphological forms, though less for cyst surfaces. Hydrophobicity was determined by adhesion to n-hexadecane and indicated a relatively low hydrophobic nature of both forms, though less so for cysts. Surface carbohydrate composition was studied by the use of fluorescent lectins and flow cytometry, using a ligand-receptor approach for further in depth analysis of binding of particular lectins. These studies showed trophozoite and cyst surfaces to be rich in N-acetylglucosamine, N-acteylneuraminic acid, mannose and glucose, with the addition of N-acetylgalactosamine on cysts. The importance of such surface properties was investigated with respect to phagocytosis of polystyrene latex microspheres, of different surface types and size. Investigations into the optimum conditions of uptake of beads indicated a preference for a medium devoid of nutrients, such as saline, though temperature was not a factor. An amoebal predilection for beads of lower charge and greater hydrophobicity was demonstrated. Furthermore, a preference for the largest bead size used (2.0 m) was observed. The influence of either Con A or mannose or glucose on bead association was apparently limited. The fate of foreign DNA ingested by Acanthamoeba appeared to indicate that such DNA was destroyed, as it could not be detected following extraction procedures and PCR amplification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The new technology of combinational chemistry has been introduced to pharmaceutical companies, improving and making more efficient the process of drug discovery. Automated combinatorial chemistry in the solution-phase has been used to prepare a large number of compounds of anti-cancer screening. A library of caffeic acid derivatives has been prepared by the Knoevenagel condensation of aldehyde and active methylene reagents. These products have been screened against two murine adenocarcinoma cell lines (MAC) which are generally refractive to standard cytotoxic agents. The target of anti-proliferative action was the 12- and 15-lipoxygenase enzymes upon which these tumour cell lines have been shown to be dependent for proliferation and metastasis. Compounds were compared to a standard lipoxygenase inhibitor and if found to be active anti-proliferative agents were tested for their general cytotoxicity and lipoxygenase inhibition. A solid-phase bound catalyst, piperazinomethyl polystyrene, was devised and prepared for the improved generation of Knoevenagel condensation products. This piperazinomethyl polystyrene was compared to the traditional liquid catalyst, piperidine, and was found to reduce the amount of by-products formed during reaction and had the advantage of easy removal from the reaction. 13C NMR has been used to determine the E/Z stereochemistry of Knoevenagel condensation products. Soluble polymers have been prepared containing different building blocks pendant to the polymer backbone. Aldehyde building blocks incorporated into the polymer structure have been subjected to the Knoevenagel condensation. Cleavage of the resultant pendant molecules has proved that soluble linear polymers have the potential to generate combinatorial mixtures of known composition for biological testing. Novel catechol derivatives have been prepared by traditional solution-phase chemistry with the intention of transferring their synthesis to a solid-phase support. Catechol derivatives prepared were found to be active inhibitors of lipoxygenase. Soluble linear supports for the preparation of these active compounds were designed and tested. The aim was to develop a support suitable for the automated synthesis of libraries of catechol derivatives for biological screening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell surface properties of the basidiomycete yeast Cryptococcus neoformans were investigated with a combination of novel and well proven approaches. Non-specific cell adhesion forces, as well as exposed carbohydrate and protein moieties potentially associated with specific cellular interaction, were analysed. Experimentation and analysis employed cryptococcal cells of different strains, capsular status and culture age. Investigation of cellular charge by particulate microelectrophoresis revealed encapsulated yeast forms of C. neoformans manifest a distinctive negative charge regardless of the age of cells involved; in turn, the neutral charge of acapsulate yeasts confirmed that the polysaccharide capsule, and not the cell wall, was responsible for this occurrence. Hydrophobicity was measured by MATH and HICH techniques, as well as by the attachment of polystyrene microspheres. All three techniques, where applicable, found C. neoformans yeast to be consistently hydrophilic; this state varied little regardless of strain and culture age. Cell surface carbohydrates and protein were investigated with novel fluorescent tagging protocols, flow cytometry and confocal microscopy. Cell surface carbohydrate was identified by controlled oxidation in association with biotin hydrazide and fluorescein-streptavidin tagging. Marked amounts of carbohydrate were measured and observed on the cell wall surface of cryptococcal yeasts. Furthermore, tagging of carbohydrates with selective fluorescent lectins supported the identification, measurement and observation of substantial amounts of mannose, glucose and N-acetyl-glucosamine. Cryptococcal cell surface protein was identified using sulfo-NHS-biotin with fluorescein-streptavidin, and then readily quantified by flow cytometry. Confocal imaging of surface exposed carbohydrate and protein revealed common localised areas of vivid fluorescence associated with buds, bud scars and nascent daughter cells. Carbohydrate and protein fluorescence often varied between strains, culture age and capsule status of cells examined. Finally, extension of protein tagging techniques resulted in the isolation and extraction of two biotinylated proteins from the yeast cell wall surface of an acapsulate strain of C.neoformans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project is concerned with the deterioration of surface coatings as a result of weathering and exposure to a pollutant gas (in this case nitric oxide). Poly(vinyl chloride) (PVC) plastisol surface coatings have been exposed to natural and artificial weathering and a comparison of the effects of these two types of weathering has been made by use of various analytical techniques. These techniques have each been assessed as to their value in providing information regarding changes taking place in the coatings during ageing, and include, goniophotometry, micro-penetrometry, surface energy measurements, weight loss measurements, thermal analysis and scanning electron microscopy. The results of each of these studies have then been combined to show the changes undergone by PVC plastisol surface coatings during ageing and to show the effects which additives to the coatings have on their behaviour and in particular the effects of plasticiser, pigment and uv and thermal stabilisers. Finally a preliminary study of the interaction between five commercial polymers and nitric oxide has been carried out, the polymers being polypropylene, cellulose acetate butyrate, polystyrene, polyethylene terephthalate and polycarbonate. Each of the samples was examined using infra-red spectroscopy in the transmission mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work peptide antigens [ESAT-6,p45 in water (1ml, 1mg/ml)] have been adsorbed onto 10mg inorganic substrates (hydroxyapatite (MHA P201;P120, CHA), polystyrene, calcium carbonate and glass microspheres) and in vitro release characteristics were determined. The aim of formulation was to enhance the interaction of peptides with antigen presenting cells and to achieve rapid peptide release from the carrier compartment system in a mildly acidic environment. Hydroxyapatite microparticle P201 has a greater surface area and thus has the largest peptide adsorption compared to the P120. CHA gave a further higher adsorption due to larger surface area than that available on microparticles. These particles were incorporated into the BOVIGAMTM assay to determine if they improve the sensitivity. After overnight incubation the blood plasma was removed and the amount of IFN-g in each plasma sample was estimated. CHA and MHA P201 gave a significantly higher immune response at low peptide concentration compared to the free peptide, thus indicating that these systems can be used to evaluate Tuberculosis (TB) amongst cattle using the BOVIGAMTM assay. Badgers are a source of TB and pass infection to cattle. At the moment vaccination against TB in badgers is via the parenteral route and requires a trained veterinary surgeon as well as catching the badgers. This process is expensive and time consuming; consequently an oral delivery system for delivery of BCG vaccines is easier and cheaper. The initial stage involved addition of various surfactants and suspending agents to disperse BCG and the second stage involved testing for BCG viability. Various copolymers of Eudragit were used as enteric coating systems to protect BCG against the acidic environment of the stomach (SGF, 0.1M HCl pH 1.2 at 37oC) while dissolving completely in the alkaline environment of the small intestine (SIF, IM PBS solution pH 7.4 at 37oC). Eudragit L100 dispersed in 2ml PBS solution and 0.9ml Tween 80 (0.1%w/v) gave the best results remaining intact in SGF loosing only approximately 10-15% of the initial weight and dissolving completely within 3 hours. BCG was incorporated within the matrix formulation adjusted to pH 7 at the initial formulation stage containing PBS solution and Tween 80. It gave viability of x106 cfu/ml at initial formulation stage, freezing and freeze-drying stages. After this stage the matrix was compressed at 4 tons for 3 mins and placed in SGF for 2 hours and then in SIF until dissolved. The BCG viability dropped to x106 cfu/ml. There is potential to develop it further for oral delivery of BCG vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption of two qroups of nonionic surface active agents and a series of hiqh molecular weiqht hydrophilic polymer fractions onto a polystyrene latex and a drug substance diloxanide furoate B.P. has been investigated. The presence of pores within the drug surface has been demonstrated and this is shown to increase the adsorption of low molecular weight polymer species. Differences in the maximum amount of polymer adsorbed at both solid-solution interfaces have been ascribed to the different hydrophobicities of the surface as determined by contact angle measurements. Adsorbed layer thicknesses of polymer on polystyrene latex have been determined by three techniques: microelectrophoresis, intensity fluctuation spectroscopy and by viscometric means. These results, in combination with adsorption data, were used to interpret the configuration of the adsorbed polymer molecules at the interface. The type of druq suspension produced on adsorbing the different polymers in the absence of electrostatic stabilization was correlated with theoretical prediuctions of suspension characteristics deduced from potential energy diagrams, The agreement was good for the adsorption of short chain length surfactants, but for the polyvinylalcohols, discrepancies were found between experiment and theory. This was attributed to the inappropriate use of a mean segment density approximation within the adsorbed layer to calculate attractive potentials between particles. A maximum in the redispersibility values for suspensions coated with adsorbed nonylphenylethoxylates was attributed to "partial static stabilization" of the particles in conjunction with the attractive forces operating in the sediment between bare surface patches on neighbouring particles. No significant change in the dissolution of the drug was observed when nonylphenylethoxylates were adsorbed due to desorption upon contact with the dissolution medium. Pluronic F68 and all the polyvinylalcohol fractions caused a reduction in the dissolution rate which is explained by the decreased diffusion of drug' through the adsorbed polymer layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption of nonionic surface active agents of polyoxyethylene glycol monoethers of n hexadecanols on polystyrene latex and nonionic cellulose polymers of hydroxyethyl cellulose, hydroxypropyl cellulose and hydroxypropyl methylcellulose on polystyrene latex and ibuprofen drug particles have been studied. The adsorbed layer thicknesses were determined by means of microelectrophoretic and viscometric methods. The conformation of the adsorbed molecules at the solid-liquid interface was deduced from the molecular areas and the adsorbed layer thicknesses. Comparison of the adsorption results obtained from polystyrene latex and ibuprofen particles was made to explain the conformation difference between these two adsorbates. Sedimentation volumes and redispersibility values were the main criteria used to evaluate suspension stability. At low concentrations of surface active agents, hard caked suspensions were found, probably due to the attraction between the uncoated areas or, the mutual adsorption of the adsorbed molecules on the bare surface of the particles in the sediment. At high concentrations of hydroxypropyl cellulose and hydroxypropyl methylcellulose, heavily caked sediments were attributed to network structure formation by the adsorbed molecules. An attempt was made to relate the characteristics of the suspensions to the potential energy of interaction curves. Generally, the agreement between theory and experiment was good, but for hydroxyethyl cellulose-ibuprofen systems discrepancies were found. Experimental studies showed that hydroxyethyl cellulose flocculated polystyrene latex over a rather wide range of concentrations; similarly, hydroxyethyl cellulose-ibuprofen suspensions were also flocculated. Therefore, it ls suggested that a term to account for flocculation energy of the polymer should be added to the total energy of interaction. A rheometric method was employed to study the flocculation energy of the polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Phagocytic polymorphonuclear leucocytes (PMNLs) or neutrophils have a marked avidity for the uptake of particulate material and are the first cell type to respond to inflammatory stimuli in vivo. 2. By harnessing these pathophysiological characteristics the inherent targeting capacity of the PMNL could be exploited to carry drug loaded particles to these sites. 3. In vitro chemotaxis of PMNLs was studied in response to N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) in the Blindwell chamber assay. 4. After phagocytosis of 1.1m polystyrene latex (PSL) beads at a range of incubation concentrations (5,10,20, and 30 beads/cell) the migration of the PMNL population was not significantly different from control, without beads. 5. The distribution of the beads within the filter showed that a disproportionately large number of PSL (50%) were associated with the cells on the surface of the filter that had not penetrated the filter. Eighty per cent of the PMNL population migrated and despite containing less PSL beads/cell, 50% of the dose was carried into the filter. Between 5 and 10% of these PSL were carried beyond 60m in the assay. 6. These results suggested heterogeneity of the PMNL population and to achieve efficient targeting with these cells preferential selection of the migratory sub-population would be needed. 7. The air-pouch model was then developed to study the focal accumulation of PMNLs in vivo. The PMNL isolated did not survive long enough in the circulation due to the trauma of the isolation procedure used; an alternative method will have to be employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anchorage dependent cell culture is a useful model for investigating the interface that becomes established when a synthetic polymer is placed in contact with a biological system. The primary aim of this interdisciplinary study was to systematically investigate a number of properties that were already considered to have an influence on cell behaviour and thereby establish the extent of their importance. It is envisaged that investigations such as these will not only further the understanding of the mechanisms that affect cell adhesion but may ultimately lead to the development of improved biomaterials. In this study, surface analysis of materials was carried out in parallel with culture studies using fibroblast cells. Polarity, in it's ability to undergo hydrogen bonding (eg with water and proteins), had an important affect on cell behaviour, although structural arrangement and crystallinity were not found to exert any marked influence. In addition, the extent of oxidation that had occurred during the process of manufacture of substrates was also important. The treatment of polystyrene with a selected series of acids and gas plasmas confirmed the importance of polarity, structural groups and surface charge and it was shown that this polymer was not unique among `hydrophobic' materials in it's inability to support cell adhesion. The individual water structuring groups within hydrogel polymers were also observed to have controlling effects on cell behaviour. An overall view of the biological response to both hydrogel and non-hydrogel materials highlighted the importance of surface oxidation, polarity, water structuring groups and surface charge. Initial steps were also taken to analyse foetal calf serum, which is widely used to supplement cell culture media. Using an array of analytical techniques, further experiments were carried out to observe any possible differences in the amounts of lipids and calcium that become deposited to tissue culture and bacteriological grade plastic under cell culture conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first demonstration "polymeric ligands" for the immobilisation of quantum dots (QDs) is presented. Specifically, thiol-containing polystyrene microspheres were synthesised and used to incorporate QDs via a swelling/doping strategy. The resultant composite materials were shown to be highly stable against QD leaching in both apolar and polar solvents and retained an identical QD emission profile to non-immobilised QDs. This straightforward approach also allows easy access to controllable and reproducible multiple-QDcontaining microspheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neural stem cells (NSC) are a valuable model system for understanding the intrinsic and extrinsic controls for self-renewal and differentiation choice. They also offer a platform for drug screening and neurotoxicity studies, and hold promise for cell replacement therapies for the treatment of neurodegenerative diseases. Fully exploiting the potential of this experimental tool often requires the manipulation of intrinsic cues of interest using transfection methods, to which NSC are relatively resistant. In this paper, we show that mouse and human NSC readily take up polystyrene-based microspheres which can be loaded with a range of chemical or biological cargoes. This uptake can take place in the undifferentiated stage without affecting NSC proliferation and their capacity to give rise to neurons and glia. We demonstrate that ß-galactosidase-loaded microspheres could be efficiently introduced into NSC with no apparent toxic effect, thus providing proof-of-concept for the use of microspheres as an alternative biomolecule delivery system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.