21 resultados para polymeric surfactant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The component spectra of a mixture of isomers with nearly identical diffusion coefficients cannot normally be distinguished in a standard diffusion-ordered spectroscopy (DOSY) experiment but can often be easily resolved using matrix-assisted DOSY, in which diffusion behaviour is manipulated by the addition of a co-solute such as a surfactant. Relatively little is currently known about the conditions required for such a separation, for example, how the choice between normal and reverse micelles affects separation or how the isomer structures themselves affect the resolution. The aim of this study was to explore the application of sodium dodecyl sulfate (SDS) normal micelles in aqueous solution and sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT) aggregates in chloroform, at a range of concentrations, to the diffusion resolution of some simple model sets of isomers such as monomethoxyphenols and short chain alcohols. It is shown that SDS micelles offer better resolution where these isomers differ in the position of a hydroxyl group, whereas AOT aggregates are more effective for isomers differing in the position of a methyl group. For both the normal SDS micelles and the less well-defined AOT aggregates, differences in the resolution of the isomers can in part be rationalised in terms of differing degrees of hydrophobicity, amphiphilicity and steric effects. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research was to investigate the molecular interactions occurring in the formulation of non-ionic surfactant based vesicles composed monopalmitoyl glycerol (MPG), cholesterol (Chol) and dicetyl phosphate (DCP). In the formulation of these vesicles, the thermodynamic attributes and surfactant interactions based on molecular dynamics, Langmuir monolayer studies, differential scanning calorimetry (DSC), hot stage microscopy and thermogravimetric analysis (TGA) were investigated. Initially the melting points of the components individually, and combined at a 5:4:1 MPG:Chol:DCP weight ratio, were investigated; the results show that lower (90 C) than previously reported (120-140 C) temperatures could be adopted to produce molten surfactants for the production of niosomes. This was advantageous for surfactant stability; whilst TGA studies show that the individual components were stable to above 200 C, the 5:4:1 MPG:Chol:DCP mixture show ∼2% surfactant degradation at 140 C, compared to 0.01% was measured at 90 C. Niosomes formed at this lower temperature offered comparable characteristics to vesicles prepared using higher temperatures commonly reported in literature. In the formation of niosome vesicles, cholesterol also played a key role. Langmuir monolayer studies demonstrated that intercalation of cholesterol in the monolayer did not occur in the MPG:Chol:DCP (5:4:1 weight ratio) mixture. This suggests cholesterol may support bilayer assembly, with molecular simulation studies also demonstrating that vesicles cannot be built without the addition of cholesterol, with higher concentrations of cholesterol (5:4:1 vs 5:2:1, MPG:Chol:DCP) decreasing the time required for niosome assembly. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel polymeric compounds of formula [M(btzb)3][ClO4]2 (Mll = Fe, Ni or Cu) with btzb = 1,4-bis-(tetrazol-1-yl)butane have been prepared and their physical properties investigated. The btzb ligand has been prepared and its crystal structure determined, together with a tentative crystal structure of the 3-D compound [Fe(btzb)3][ClO4]2. The model of the latter shows two symmetry-related, interpenetrating Fe-btzb networks in which the iron(II) ions approach each other as close as 8.3 and 9.1 Å. This supramolecular catenane undergoes a sharp thermal spin transition around 160 K with hysteresis (20 K) along with a pronounced thermochromic effect. The spin crossover behaviour has been followed by magnetic, DSC, optical spectroscopy and 57Fe Mössbauer spectroscopy measurements. Irradiation with green light at low temperature leads to population of the metastable high-spin state for the thermally active iron(ll) ions. The nature of the spin crossover behaviour has been discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discovering the function of an unknown protein, particularly one with neither structural nor functional correlates, is a daunting task. Interaction analyses determine binding partners, whereas DNA transfection, either transient or stable, leads to intracellular expression, though not necessarily at physiologically relevant levels. In theory, direct intracellular protein delivery (protein transduction) provides a conceptually simpler alternative, but in practice the approach is problematic. Domains such as HIV TAT protein are valuable, but their effectiveness is protein specific. Similarly, the delivery of intact proteins via endocytic pathways (e.g. using liposomes) is problematic for functional analysis because of the potential for protein degradation in the endosomes/lysosomes. Consequently, recent reports that microspheres can deliver bio-cargoes into cells via a non-endocytic, energy-independent pathway offer an exciting and promising alternative for in vitro delivery of functional protein. In order for such promise to be fully exploited, microspheres are required that (i) are stably linked to proteins, (ii) can deliver those proteins with good efficiency, (iii) release functional protein once inside the cells, and (iv) permit concomitant tracking. Herein, we report the application of microspheres to successfully address all of these criteria simultaneously, for the first time. After cellular uptake, protein release was autocatalyzed by the reducing cytoplasmic environment. Outside of cells, the covalent microsphere-protein linkage was stable for ≥90 h at 37°C. Using conservative methods of estimation, 74.3% ± 5.6% of cells were shown to take up these microspheres after 24 h of incubation, with the whole process of delivery and intracellular protein release occurring within 36 h. Intended for in vitro functional protein research, this approach will enable study of the consequences of protein delivery at physiologically relevant levels, without recourse to nucleic acids, and offers a useful alternative to commercial protein transfection reagents such as Chariot™. We also provide clear immunostaining evidence to resolve residual controversy surrounding FACS-based assessment of microsphere uptake. © 2014 by The American Society for Biochemistry and Molecular Biology Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miscanthus × giganteus was subjected to pre-treatment with deionised water, hydrochloric acid or Triton X-100 surfactant, and subsequently fast pyrolysed in a fluidised bed reactor at 535 °C to obtain bio-oil. Triton X-100 surfactant was identified as a promising pre-treatment medium for removal of inorganic matter because its physicochemical nature was expected to mobilise inorganic matter in the biomass matrix. The influence of different concentrations of Triton X-100 pre-treatment solutions on the quality of bio-oil produced from fast pyrolysis was studied, as defined by a single phase bio-oil, viscosity index and water content index. The highest concentration of Triton X-100 surfactant produced the best quality bio-oil with high organic yield and low reaction water content. The calculated viscosity index from the accelerated ageing test showed that bio-oil stability improved as the concentration of Triton X-100 increased. © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-organization of organic molecules with carbon nanomaterials leads to formation of functionalized molecular nano-complexes with advanced features. We present a study of physical and chemical properties of carbon nanotube-surfactant-indocarbocyanine dye (astraphloxin) in water focusing on aggregation of the dye and resonant energy transfer from the dye to the nanotubes. Self-assembly of astraphloxin is evidenced in absorbance and photoluminescence depending dramatically on the concentrations of both the dye and surfactant in the mixtures. We observed an appearance of new photoluminescence peaks in visible range from the dye aggregates. The aggregates characterized with red shifted photoluminescence peaks at 595, 635 and 675 nm are formed mainly due to the presence of surfactant at the premicellar concentration. The energy transfer from the dye to the nanotubes amplifying near-infrared photoluminescence from the nanotubes is not affected by the aggregation of astraphloxin molecules providing important knowledge for further development of advanced molecular nano-complexes. The aggregation with the turned-on peaks and the energy transfer with amplified photoluminescence create powerful tools of visualization and/or detection of the nanotubes in visible and near-infrared spectral range, respectively, boosting its possible applications in sensors, energy generation/storage, and healthcare.