25 resultados para plasma glucose


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: To assess initial pharmacotherapy of Type 2 diabetes with the sodium-glucose cotransporter-2 inhibitor dapagliflozin. Methods: This double-blind, placebo-controlled trial, randomly allocated people with Type 2 diabetes aged 18-77 years and inadequate glycaemic control on diet and exercise [HbA1c 53-86 mmol/mol (7.0-10.0%)] to receive placebo (n = 75) or dapagliflozin monotherapy 2.5 mg (n = 65), 5 mg (n = 64) or 10 mg (n = 70) once daily in the morning. After 24 weeks, low-dose double-blind metformin 500 mg/day was added to the placebo group regimen (placebo+low-dose metformin group). Changes in HbA1c level, fasting plasma glucose and body weight, as well as adverse events, were assessed over 102 weeks. Results: Of the 274 participants randomized, 167 completed the study (60.9%). At 102 weeks, significant differences vs placebo+low-dose metformin with dapagliflozin 5 and 10 mg were observed for HbA1c (-5.8 mmol/mol [-0.53%], P = 0.018; and -4.8 mmol/mol [-0.44%], P = 0.048), respectively); and for FPG (-0.69 mmol/L, P = 0.044; and -1.12 mmol/l, P = 0.001, respectively). For body weight, the difference between the dapagliflozin 10-mg group and the placebo+low-dose metformin group was significant (-2.60 kg; P = 0.016). Hypoglycaemic events were uncommon, with rates of 5.3% for placebo+low-dose metformin group and 0-4.6% for the dapagliflozin groups. Genital infections and urinary tract infections were more common in the dapagliflozin groups than in the placebo+low-dose metformin group. Conclusions: Dapagliflozin as monotherapy in treatment-naïve people with early Type 2 diabetes improved glycaemic control and reduced weight without increasing hypoglycaemia over 102 weeks. Dapagliflozin may provide an alternative initial pharmacotherapy in such people.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: This 12-week study assessed the efficacy and tolerability of imeglimin as add-on therapy to the dipeptidyl peptidase-4 inhibitor sitagliptin in patients with type 2 diabetes inadequately controlled with sitagliptin monotherapy. RESEARCH DESIGN AND METHODS: In a multicenter, randomized, double-blind, placebo-controlled, parallel-group study, imeglimin (1,500 mg b.i.d.) or placebo was added to sitagliptin (100 mg q.d.) over 12weeks in 170 patientswith type 2 diabetes (mean age 56.8 years; BMI 32.2 kg/m2) that was inadequately controlled with sitagliptin alone (A1C ≥7.5%) during a 12-week run-in period. The primary ef ficacy end point was the change in A1C from baseline versus placebo; secondary end points included corresponding changes in fasting plasma glucose (FPG) levels, strati fication by baseline A1C, and percentage of A1C responders. RESULTS: Imeglimin reduced A1C levels (least-squares mean difference) from baseline (8.5%) by 0.60% compared with an increase of 0.12% with placebo (between-group difference 0.72%, P < 0.001). The corresponding changes in FPG were -0.93 mmol/L with imeglimin vs. -0.11 mmol/L with placebo (P = 0.014). With imeglimin, the A1C level decreased by ≥0.5% in 54.3% of subjects vs. 21.6% with placebo (P < 0.001), and 19.8%of subjects receiving imeglimin achieved a decrease in A1C level of ≤7% compared with subjects receiving placebo (1.1%) (P = 0.004). Imeglimin was generally well tolerated, with a safety pro file comparable to placebo and no related treatment-emergent adverse events. CONCLUSIONS: Imeglimin demonstrated incremental efficacy benefits as add-on therapy to sitagliptin, with comparable tolerability to placebo, highlighting the potential for imeglimin to complement other oral antihyperglycemic therapies. © 2014 by the American Diabetes Association.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and aims: Lixisenatide, a once-daily prandial glucagon-like peptide-1 receptor agonist, reduces postprandial (PP) glycaemic excursions and HbA 1c . We report an exploratory analysis of the GetGoal-M and S trials in patients with type 2 diabetes mellitus (T2DM) with different changes in PP glucagon levels in response to lixisenatide treatment. Materials and methods: Patients (n=423) were stratified by their change in 2 hour PP glucagon level between baseline evaluation and Week 24 of treat - ment with lixisenatide as add-on to oral antidiabetics (OADs) into groups of Greater Change (GC; n=213) or Smaller Change (SC; n=210) in plasma glucagon levels (median change -23.57 ng/L). ANOVA and Chi-squared tests were used for the comparison of continuous and categorical variables, respec - tively. Baseline and endpoint continuous measurements in each group were compared using paired t -tests. Results: Mean change from baseline in 2 hour PP glucagon levels for the GC vs SC groups was -47.19 vs -0.59 ng/L (p<0.0001), respectively. Patients in the GC group had a shorter mean duration of diabetes (7.3 vs 9.0 years; p=0.0036) and lesser OAD use (4.5 vs 5.7 years; p=0.0092) than those in the SC group. Patients in the GC group had a greater mean reduction in HbA 1c (-1.10 vs -0.67%; p<0.0001), fasting plasma glucose (FPG; -25.20 vs -9.30 mg/dL [p<0.0001]), PP plasma glucose (PPG; -129.40 vs -78.22 mg/dL [p<0.0001]), and a greater drop in weight (-2.27 vs -1.17 kg; p=0.0002) and body mass index (-0.84 vs -0.44 kg/m 2 ; p=0.0002) than those in the SC group. More patients in the GC group also achieved composite endpoints, including HbA 1c <7% with no symptomatic hypoglycaemia and no weight gain (40.38 vs 19.52%; p<0.0001), than in the SC group. Conclusion: Greater reductions in PP glucagon associated with lixisenatide as add-on to OADs in patients with T2DM are also associated with greater reductions in HbA1c, FPG, PPG, and greater weight loss, highlighting the importance of glucagon suppression on therapeutic response. Clinical Trial Registration Number: NCT00712673; NCT00713830 Supported by: Sanof

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this present study was to investigate if overweight individuals exhibit signs of vascular dysfunction associated with a high risk for cardiovascular disease (CVD). One hundred lean and 100 overweight participants were recruited for the present study. Retinal microvascular function was assessed using the Dynamic Retinal Vessel Analyser (DVA), and systemic macrovascular function by means of flow-mediated dilation (FMD). Investigations also included body composition, carotid intimal-media thickness (c-IMT), ambulatory blood pressure monitoring (BP), fasting plasma glucose, triglycerides (TG), cholesterol levels (HDL-C and LDL-C), and plasma von Willebrand factor (vWF). Overweight individuals presented with higher right and left c-IMT (p = 0.005 and p = 0.002, respectively), average 24-h BP values (all p <0.001), plasma glucose (p = 0.008), TG (p = 0.003), TG: HDL-C ratio (p = 0.010), and vWF levels (p = 0.004). Moreover, overweight individuals showed lower retinal arterial microvascular dilation (p = 0.039) and baseline-corrected flicker (bFR) responses (p = 0.022), as well as, prolonged dilation reaction time (RT, p = 0.047). These observations emphasise the importance of vascular screening and consideration of preventive interventions to decrease vascular risk in all individuals with adiposity above normal range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and aims: The selective SGLT2 inhibitor dapagliflozin (DAPA) reduces hyperglycaemia independently of insulin secretion or action by inhibiting renal glucose reabsorption. This study (MB102014) is a randomised double-blind, placebo (PBO)-controlled trial of DAPA added to metformin (MET) in T2DM (n=546) inadequately controlled with MET alone. Previously reported short-term data at week 24 showed significant mean reductions in the primary [HbA1c] and secondary [fasting plasma glucose (FPG) and weight] endpoints with DAPA compared to PBO. Here we report efficacy and safety results at week 102 of the long-term extension. Materials and methods: Patients aged 18-77 years with HbA1c 7-10% received DAPA 2.5 mg, 5 mg, 10 mg or PBO, plus open-label MET (≥1500mg/d). Exploratory endpoints at week 102 included changes from baseline in HbA1c, FPG and weight, and were analyzed by longitudinal repeated measures analysis. Results: Overall 71.2% of patients completed 102 weeks of the study; fewer on PBO (63.5%) than on DAPA 2.5 mg, 5 mg, and 10 mg (68.3%, 73.0%, 79.8%), due mainly to more patients on PBO discontinuing for lack of efficacy. At week 102, all DAPA groups showed greater mean reductions from baseline in HbA1c, FPG and weight compared to PBO (table), effects that were similar to those observed at week 24 and maintained throughout the trial. More patients at week 102 also achieved a therapeutic response of HbA1c<7% with DAPA 2.5 mg, 5 mg, and 10 mg (20.7%, 26.4%, 31.5%) than with PBO (15.4%). Adverse events (AEs), serious AEs and AEs leading to discontinuation were balanced across all groups. Signs and symptoms suggestive of genital infection (GenInf) were reported in 11.7%, 14.6%, 12.6% (DAPA 2.5 mg, 5 mg, 10 mg) and 5.1% (PBO) of patients, with 1 discontinuation due to GenInf. Signs and symptoms suggestive of urinary tract infection (UTI) were reported in 8.0%, 8.8%, 13.3% (DAPA 2.5 mg, 5 mg, 10 mg) and 8.0% (PBO), with 1 discontinuation due to UTI. No event of pyelonephritis was reported. Conclusion: In comparison to PBO, DAPA added to MET over 102 weeks demonstrated greater and sustained improvements in glycaemic control, clinically meaningful reduction in weight, and no increased risk of hypoglycaemia in patients with T2DM inadequately controlled with MET alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence and concentrations of modified proteins circulating in plasma depend on rates of protein synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage were those which were more abundant in plasma (e.g. albumin and immunoglobulins) which exist at up to 10 orders of magnitude higher concentrations than other plasma proteins e.g. cytokines. However, advances in analytical techniques using mass spectrometry and immuno-affinity purification methods, have facilitated analysis of less abundant, modified proteins and the nature of modifications at specific sites is now being characterised. The damaging reactive species that cause protein modifications in plasma principally arise from reactive oxygen species (ROS) produced by NADPH oxidases (NOX), nitric oxide synthases (NOS) and oxygenase activities; reactive nitrogen species (RNS) from myeloperoxidase (MPO) and NOS activities; and hypochlorous acid from MPO. Secondary damage to proteins may be caused by oxidized lipids and glucose autooxidation.In this review, we focus on redox regulatory control of those enzymes and processes which control protein maturation during synthesis, produce reactive species, repair and remove damaged plasma proteins. We have highlighted the potential for alterations in the extracellular redox compartment to regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory molecules, changes in redox state may be transmitted to distant sites. © 2014 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment of ex-breeder male NMRI mice with lipid mobilising factor isolated from the urine of cachectic cancer patients, caused a significant increase in glucose oxidation to CO2, compared with control mice receiving phosphate buffered saline. Glucose utilisation by various tissues was determined by the 2-deoxyglucose tracer technique and shown to be elevated in brain, heart, brown adipose tissue and gastrocnemius muscle. The tissue glucose metabolic rate was increased almost three-fold in brain, accounting for the ability of lipid mobilising factor to decrease blood glucose levels. Lipid mobilising factor also increased overall lipid oxidation, as determined by the production of 14CO2 from [14C carboxy] triolein, being 67% greater than phosphate buffered saline controls over a 24 h period. There was a significant increase in [14C] lipid accumulation in plasma, liver and white and brown adipose tissue after administration of lipid mobilising factor. These results suggest that changes in carbohydrate metabolism and loss of adipose tissue, together with an increased whole body fatty acid oxidation in cachectic cancer patients, may arise from tumour production of lipid mobilising factor. © 2002 Cancer Research UK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the incretin hormone glucagon-like peptide-1 (GLP-1) is a potent stimulator of insulin release, its rapid degradation in vivo by the enzyme dipeptidyl peptidase IV (DPP IV) greatly limits its potential for treatment of type 2 diabetes. Here, we report two novel Ala8-substituted analogues of GLP-1, (Abu8)GLP-1 and (Val8)GLP-1 which were completely resistant to inactivation by DPP IV or human plasma. (Abu8)GLP-1 and (Val8)GLP-1 exhibited moderate affinities (IC50: 4.76 and 81.1 nM, respectively) for the human GLP-1 receptor compared with native GLP-1 (IC50: 0.37 nM). (Abu8)GLP-1 and (Val8)GLP-1 dose-dependently stimulated cAMP in insulin-secreting BRIN BD11 cells with reduced potency compared with native GLP-1 (1.5- and 3.5-fold, respectively). Consistent with other mechanisms of action, the analogues showed similar, or in the case of (Val8)GLP-1 slightly impaired insulin releasing activity in BRIN BD11 cells. Using adult obese (ob/ob) mice, (Abu8 )GLP-1 had similar glucose-lowering potency to native GLP-1 whereas the action of (Val8)GLP-1 was enhanced by 37%. The in vivo insulin-releasing activities were similar. These data indicate that substitution of Ala8 in GLP-1 with Abu or Val confers resistance to DPP IV inactivation and that (Val8)GLP-1 is a particularly potent N-terminally modified GLP-1 analogue of possible use in type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Laparoscopic greater curvature plication (LGCP) is an emerging bariatric procedure that reduces the gastric volume without implantable devices or gastrectomy. The aim of this study was to explore changes in glucose homeostasis, postprandial triglyceridemia, and meal-stimulated secretion of selected gut hormones [glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), ghrelin, and obestatin] in patients with type 2 diabetes mellitus (T2DM) at 1 and 6 months after the procedure. Methods: Thirteen morbidly obese T2DM women (mean age, 53.2 ± 8.76 years; body mass index, 40.1 ± 4.59 kg/m2) were prospectively investigated before the LGCP and at 1- and 6-month follow-up. At these time points, all study patients underwent a standardized liquid mixed-meal test, and blood was sampled for assessment of plasma levels of glucose, insulin, C-peptide, triglycerides, GIP, GLP-1, ghrelin, and obestatin. Results: All patients had significant weight loss both at 1 and 6 months after the LGCP (p≤0.002), with mean percent excess weight loss (%EWL) reaching 29.7 ;plusmn2.9 % at the 6-month follow-up. Fasting hyperglycemia and hyperinsulinemia improved significantly at 6 months after the LGCP (p<0.05), with parallel improvement in insulin sensitivity and HbA1c levels (p<0.0001). Meal-induced glucose plasma levels were significantly lower at 6 months after the LGCP (p<0.0001), and postprandial triglyceridemia was also ameliorated at the 6-month follow-up (p<0.001). Postprandial GIP plasma levels were significantly increased both at 1 and 6 months after the LGCP (p<0.0001), whereas the overall meal-induced GLP-1 response was not significantly changed after the procedure (p ;gt0.05). Postprandial ghrelin plasma levels decreased at 1 and 6 months after the LGCP (p<0.0001) with no significant changes in circulating obestatin levels. Conclusion: During the initial 6-month postoperative period, LGCP induces significant weight loss and improves the metabolic profile of morbidly obese T2DM patients, while it also decreases circulating postprandial ghrelin levels and increases the meal-induced GIP response. © 2013 Springer Science+Business Media New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telomerase reverse transcriptase (TERT) is a key component of the telomerase complex. By lengthening telomeres in DNA strands, TERT increases senescent cell lifespan. Mice that lack TERT age much faster and exhibit age-related conditions such as osteoporosis, diabetes and neurodegeneration. Accelerated telomere shortening in both human and animal models has been documented in conditions associated with insulin resistance, including T2DM. We investigated the role of TERT, in regulating cellular glucose utilisation by using the myoblastoma cell line C2C12, as well as primary mouse and human skeletal muscle cells. Inhibition of TERT expression or activity by using siRNA (100. nM) or specific inhibitors (100. nM) reduced basal 2-deoxyglucose uptake by ~. 50%, in all cell types, without altering insulin responsiveness. In contrast, TERT over-expression increased glucose uptake by 3.25-fold. In C2C12 cells TERT protein was mostly localised intracellularly and stimulation of cells with insulin induced translocation to the plasma membrane. Furthermore, co-immunoprecipitation experiments in C2C12 cells showed that TERT was constitutively associated with glucose transporters (GLUTs) 1, 4 and 12 via an insulin insensitive interaction that also did not require intact PI3-K and mTOR pathways. Collectively, these findings identified a novel extra-nuclear function of TERT that regulates an insulin-insensitive pathway involved in glucose uptake in human and mouse skeletal muscle cells. © 2014 Elsevier B.V.