21 resultados para planning project
Resumo:
This chapter reports on a framework that has been successfully used to analyze the e-business capabilities of an organization with a view to developing their e-capability maturity levels. This should be the first stage of any systems development project. The framework has been used widely within start-up companies and well-established companies both large and small; it has been deployed in the service and manufacturing sectors. It has been applied by practitioners and consultants to help improve e-business capability levels, and by academics for teaching and research purposes at graduate and undergraduate levels. This chapter will provide an account of the unique e-business planning and analysis framework (E-PAF) and demonstrate how it works via an abridged version of a case study (selected from hundreds that have been produced). This will include a brief account of the three techniques that are integrated to form the analysis framework: quality function deployment (QFD) (Akao, 1972), the balanced scorecard (BSC) (Kaplan & Norton, 1992), and value chain analysis (VCA) (Porter, 1985). The case study extract is based on an online community and dating agency service identified as VirtualCom which has been produced through a consulting assignment with the founding directors of that company and has not been published previously. It has been chosen because it gives a concise, comprehensive example from an industry that is relatively easy to relate to.
Resumo:
The Implementation of Enterprise Resource Planning (ERP) systems require huge investments while ineffective implementations of such projects are commonly observed. A considerable number of these projects have been reported to fail or take longer than it was initially planned, while previous studies show that the aim of rapid implementation of such projects has not been successful and the failure of the fundamental goals in these projects have imposed huge amounts of costs on investors. Some of the major consequences are the reduction in demand for such products and the introduction of further skepticism to the managers and investors of ERP systems. In this regard, it is important to understand the factors determining success or failure of ERP implementation. The aim of this paper is to study the critical success factors (CSFs) in implementing ERP systems and to develop a conceptual model which can serve as a basis for ERP project managers. These critical success factors that are called “core critical success factors” are extracted from 62 published papers using the content analysis and the entropy method. The proposed conceptual model has been verified in the context of five multinational companies.
Resumo:
Biomass is projected to account for approximately half of the new energy production required to achieve the 2020 primary energy target in the UK. Combined heat and power (CHP) bioenergy systems are not only a highly efficient method of energy conversion, at smaller-scales a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost incumbent; a high carbon centralised energy system. Unidentified or unmitigated barriers occurring during the project lifecycle may not only negatively impact on the project but could ultimately lead to project failure. The research develops a decision support system (DSS) for small-scale (500 kWe to 10 MWe) biomass combustion CHP project development and risk management in the early stages of a potential project’s lifecycle. By supporting developers in the early stages of project development with financial, scheduling and risk management analysis, the research aims to reduce the barriers identified and streamline decision-making. A fuzzy methodology is also applied throughout the developed DSS to support developers in handling the uncertain or approximate information often held at the early stages of the project lifecycle. The DSS is applied to a case study of a recently failed (2011) small-scale biomass CHP project to demonstrate its applicability and benefits. The application highlights that the proposed development within the case study was not viable. Moreover, further analysis of the possible barriers with the DSS confirmed that some possible modifications to be project could have improved this, such as a possible change of feedstock to a waste or residue, addressing the unnecessary land lease cost or by increasing heat utilisation onsite. This analysis is further supported by a practitioner evaluation survey that confirms the research contribution and objectives are achieved.
Resumo:
Enterprise Resource Planning (ERP) projects are strategic and capital intensive, so failure may be costly and even cause bankruptcy of companies. Previous studies have proposed ways for improving implementation, but they are mostly generic and follow standardized project management practices as specified in various standards (e.g. the “project management body of knowledge” of the Project Management Institute). Because ERP is interdisciplinary (involving change management, project management and information technology management), it warrants a customized approach to managing risks throughout the life cycle of implementation and operation. Through a practical case study, this paper demonstrates a qualitative, user friendly approach to ERP project risk management. Firstly, through a literature review it identifies various risk factors in ERP implementation. Secondly, the risk management practices of a UK-based multinational consulting company in one of its clients are evaluated. The risk factors from the case study organization and literature are then compared and discussed.
Resumo:
A cross-country pipeline construction project is exposed to an uncertain environment due to its enormous size (physical, manpower requirement and financial value), complexity in design technology and involvement of external factors. These uncertainties can lead to several changes in project scope during the process of project execution. Unless the changes are properly controlled, the time, cost and quality goals of the project may never be achieved. A methodology is proposed for project control through risk analysis, contingency allocation and hierarchical planning models. Risk analysis is carried out through the analytic hierarchy process (AHP) due to the subjective nature of risks in construction projects. The results of risk analysis are used to determine the logical contingency for project control with the application of probability theory. Ultimate project control is carried out by hierarchical planning model which enables decision makers to take vital decisions during the changing environment of the construction period. Goal programming (GP), a multiple criteria decision-making technique, is proposed for model formulation because of its flexibility and priority-base structure. The project is planned hierarchically in three levels—project, work package and activity. GP is applied separately at each level. Decision variables of each model are different planning parameters of the project. In this study, models are formulated from the owner's perspective and its effectiveness in project control is demonstrated.
Resumo:
The aim of this study is to address the main deficiencies with the prevailing project cost and time control practices for construction projects in the UK. A questionnaire survey was carried out with 250 top companies followed by in-depth interviews with 15 experienced practitioners from these companies in order to gain further insights of the identified problems, and their experience of good practice on how these problems can be tackled. On the basis of these interviews and syntheses with literature, a list of 65 good practice recommendations have been developed for the key project control tasks: planning, monitoring, reporting and analysing. The Delphi method was then used, with the participation of a panel of 8 practitioner experts, to evaluate these improvement recommendations and to establish their degree of relevance. After two rounds of Delphi, these recommendations are put forward as "critical", "important", or "helpful" measures for improving project control practice.