44 resultados para permeation
Resumo:
The research described within this thesis is concerned with the investigation of transition metal ion complexation within hydrophilic copolymer membranes. The membranes are copolymers of 4-methyl-4'-vinyl-2,2'-bipyridine, the 2-hydroxyethyl ester of 4,4'- dicarboxy-2,2'-bipyridine & bis-(5-vinylsalicylidene)ethylenediamine with 2-hydroxyethyl methacrylate. The effect of the polymer matrix on the formation and properties of transition metal iron complexes has been studied, specifically Cr(III) & Fe(II) salts for the bipyridyl- based copolymer membranes and Co(II), Ni(II) & Cu(II) salts for the salenH2- based copolymer membranes. The concomitant effect of complex formation on the properties of the polymer matrix have also been studied, e.g. on mechanical strength. A detailed body of work into the kinetics and thermodynamics for the formation of Cu(II) complexes in the salenH2- based copolymer membranes has been performed. The rate of complex formation is found to be very slow while the value of K for the equilibrium of complex formation is found to be unexpectedly small and shows a slight anion dependence. These phenomena are explained in terms of the effects of the heterogeneous phase provided by the polymer matrix. The transport of Cr(III) ions across uncomplexed and Cr(III)-pre-complexed bipyridyl-based membranes has been studied. In both cases, no Cr(III) coordination occurs within the time-scale of an experiment. Pre-complexation of the membrane does not lead to a change in the rate of permeation of Cr(III) ions. The transport of Co(II), Ni(II) & Cu(II) ions across salenH2- based membranes shows that there is no detectable lag-time in transport of the ions, despite independent evidence that complex formation within the membranes does occur. Finally, the synthesis of a number of functionalised ligands is described. Although they were found to be non-polymerisable by the methods employed in this research, they remain interesting ligands which provide a startmg pomt for further functionalisation.
Resumo:
The research described in this thesis explored the synthesis tlnd characteristltion of biocompatible and biodegradable polymers of lactide through non-toxic titanium alkoxide nitiators. The research objectives focused on the preparation of polylactides in both solvent and solventless media, to produce materials with a wide range of molecular weights. The polylactides were fully characterised using gel permeation chromatography and 1H and 13C NMR spectroscopy. NMR spectroscopy was carried out in the study the reaction mechanisms. Kinetic studies of the ring opening polymerisation of lactide with titanium alkoxide initiators were also conducted using NMR spectroscopy. The objectives of this research were also focused on the enhancement of the flexibility of the polymer chains by synthesising random and block copolymers of lactide and ε-caprolactone using Ti(0-i-Pr)4 as an initiator, This work involved extensive characterisalion of the synthesised copolymers using gel permeation chromatography and 1H and 13C NMR spectroscopic analysis. Kinetic studies of the ring opening polymerisation of ε-caplrolactone and of the copolymerisation of lactide and ε-caprolactone with Ti(O-i-Pr)4 as an initiator were also carried out. The last section of this work involved the synthesis of block and star-shaped copolymers of lactide and poly(ethylene glycol) [PEG]. The preparation of lactide/PEG block copolymers was carried out by ring opening polymerisation of L-Iactide using Ti(O-i-Pr)4 as an initiator and hydroxyl-terminated PEG's with different numbers of hydroxyl groups as co-initiators both in solution and solventless media. These all-in-one polymersations yielded the synthesis of both lactide homopolymer and lactide/PEG block copolymer. In order to selectively synthesise copolymers of lactide and PEG, the experiment was carried out in two steps. The first step consisted of the synthesis of a titanium macro-initiator by exchanging the iso-propoxide ligands by PEG with different numbers of hydroxyl groups. The second step involved the ring opening polymerisation of lactide using the titanium macrocatalyst that was prepared as an initiator. The polymerisations were carried out in a solventless media. The synthesis of lactide/PEG copolymers using polyethylene glycol with amino terminal groups was also discussed. Extensive characterisation of the lactide block copolymers and macroinitiators was carried out using techniques such as, gel permeation chromatography (GPC), NMR spectroscopy and differential scanning calorimeter (DeS).
Resumo:
A review of ultrafiltration (UF) theory and equipment has been made. Dextran is fractionated industrially by ethanol precipitation, which is a high energy intensive process. The aims of this work were to investigate the fractionation of dextran using UF and to compare the efficiency and costs of UF fractionation with ethanol fractionation. This work is the continuation of research conducted at Aston, which was concerned with the fractionation of dextran using gel permeation chromatography (GPC) and hollow fibre UF membranes supplied by Amicon Ltd. Initial laboratory work centred on determining the most efficient make and configuration of membrane. UF membranes of the Millipore cassette configuration, and the DDS flat-sheet configuration, were examined for the fracationation of low molecular weight (MW) dextran. When compared to Amicon membranes, these membranes were found to be inferior. DDS membranes of 25 000 and 50 000 MW cut-offs were shown to be capable of fractionating high MW dextran with the same efficiency as GPC. The Amicon membranes had an efficiency comparable to that of ethanol fractionation. To increase this efficiency a theoretical UF membrane cascade was adopted to utilize favourable characteristics encountered in batch mode membrane experiments. The four stage cascade used recycled permeates in a counter- current direction to retentate flow, and was operated 24 hours per day controlled by a computer. Using 5 000 MW cut-off membranes the cascade improved the batch efficiency by at least 10% for a fractionation at 6 000 MW. Economic comparisons of ethanol fractionation, combined GPC and UF fractionation, and UF fractionation of dextran were undertaken. On an economic basis GPC was the best method for high MW dextran fractionation. When compared with a plant producing 100 tonnes pa of clinical dextran, by ethanol fractionation, a combined GPC and UF cascade fractionation could produce savings on operating costs and an increased dextran yield of 5%.
Resumo:
In this study, investigations into phonophoresis were conducted by employing 3 distinct in vitro models. The aim of the first model was to evaluate the effect of ultrasound on the migration rate of different classes of molecules through agar gel. The derived data suggested that small, relatively hydrophobic molecules are more susceptible to ultrasound-enhanced diffusion through the water-filled channels of the agar gel. The application of heat alone increased drug migration by a similar magnitude as the ultrasound, indicating that ultrasonic heating directly increases the thermodynamic potential for diffusion. In the second experimental system, whole rat skin was pre-sonicated and then examined for changes in its barrier properties. At high intensities (1 to 2W cm-2), ultrasonic waves irreversibly compromised the barrier properties of the skin, following the general patterns described in the literature reports. At low intensities (< 1W cm-2), ultrasound discharged sebum from the sebaceous glands so as to fill much of the hair follicle shafts. This entirely novel phenomenon is probably produced by the mechanical effects of the beam. The deposition of sebaceous lipids within the hair follicle shafts can mean that this absorption pathway is blocked for hydrophilic molecules that penetrate via this route. Consequently, this phenomenon can be utilised as a probe to measure the relative follicular contribution to total penetration for these molecules. In the final phonophoresis model, modified Franz cells were employed in order to assess the ultrasound effect on the concurrent transdermal permeation of various molecules through whole rat skin. For the most lipophilic agent tested, the rate-limiting step of absorption was partitioning from the stratum corneum into the viable epidermis. Sonication did not accelerate this step.
Resumo:
Contrary to previously held beliefs, it is now known that bacteria exist not only on the surface of the skin but they are also distributed at varying depths beneath the skin surface. Hence, in order to sterilise the skin, antimicrobial agents are required to penetrate across the skin and eliminate the bacteria residing at all depths. Chlorhexidine is an antimicrobial agent with the widest use for skin sterilisation. However, due to its poor permeation rate across the skin, sterilisation of the skin cannot be achieved and, therefore, the remaining bacteria can act as a source of infection during an operation or insertion of catheters. The underlying theme of this study is to enhance the permeation of this antimicrobial agent in the skin by employing chemical (enhancers and supersaturated systems) or physical (iontophoresis) techniques. The hydrochloride salt of chlorhexidine (CHX), a poorly soluble salt, was used throughout this study. The effect of ionisation on in vitro permeation rate across the excised human epidennis was investigated using Franz-type diffusion cells. Saturated solutions of CHX were used as donor and the variable studied was vehicle pH. Permeation rate was increased with increasing vehicle pH. The pH effect was not related to the level of ionisation of the drug. The effect of donor vehicle was also studied using saturated solutions of CHX in 10% and 20% ethanol as the donor solutions. Permeation of CHX was enhanced by increasing the concentration of ethanol which could be due to the higher concentration of CHX in the donor phase and the effect of ethanol itself on the membrane. The interplay between drug diffusion and enhancer pretreatment of the epidennis was studied. Pretreatment of the membrane with 10% Azone/PG demonstrated the highest diffusion rate followed by 10% olcic acid/PG pretreatment compared to other pretreatment regimens (ethanol, dimethyl sulfoxide (DMSO), propylene glycol (PG), sodium dodecyl sulphate (SDS) and dodecyl trimethyl ammonium bromide (DT AB). Differential Scanning Calorimetry (DSC) was also employed to study the mode of action of these enhancers. The potential of supersaturated solutions in enhancing percutaneous absorption of CHX was investigated. Various anti-nucleating polymers were screened in order to establish the most effective agent. Polyvinylpyrrolidone (PVP, K30) was found to be a better candidate than its lower molecular weight counterpart (K25) and hydroxypropyl methyleellulose (HPMC). The permeation studies showed an increase in diffusion rate by increasing the degree of saturation. Iontophoresis is a physical means of transdemal drug delivery enhancement that causes an increased penetration of molecules into or through the skin by the application of an electric field. This technique was employed in conjunction with chemical enhancers to assess the effect on CHX permeation across the human epidermis. An improved transport of CHX, which was pH dependant was observed upon application of the current. Combined use of iontophoresis and chemical enhancers further increased the CHX transport indicating a synergistic effect. Pretreatment of the membrane with 10% Azone/PG demonstrated the greatest effect.
Resumo:
The effects of ionisation on transdermal drug delivery using excised human epidermis (HS) and silastic rubber (SR) as model permeation barriers were investigated in vitro using Franz-type absorption cells. Suspensions and solutions of salicylic acid (SA), the model ionogenic permeant, were used as donors and the variables studied were vehicle pH and trans-membrane pH-gradients. For solutions, the pH effect was related to the level of ionisation of the drug and the degree of saturation of the solution. With suspensions, the observed permeation rate was unaffected by pH. The penetration profiles through HS and SR were similar, although the overall flux through HS was about 70% of that observed through SR. Pretreatment of the membranes with various enhancer regimens, including oleic acid, Azone and N, N-dimethylamides in propylene glycol (PG) and isopropyl myristate (IPM) promoted the penetration of SA. SR was not a suitable model for enhancer pretreatment using IPM as a vehicle as the membrane was significantly disrupted by this vehicle. The results from comparable experiments with and without a trans-membrane pH-gradient did not have a significant effect upon flux or flux enhancement after pretreatment with the above enhancers. A theoretical model for the extraction coefficients of weak acids was derived using the partition coefficients of the ionised and unionised species, pH and pKa. This model was shown to account for the variation in overall partition of salicylic acid dependent upon pH and pKa. This model was shown to account for the variation in overall partition of salicylic acid dependent upon pH and pKa. The distribution of this solute between aqueous and oily phases, with and without added enhancer, was measured as a function of pH. The extraction coefficients determined were consistent with the model and showed that the behaviour of the system can be explained without referral to ion-pair mechanisms. Phosphonoacetate is an effective antiviral agent. However, as it is charged at physiological pH, its permeation across cell membranes is limited. To assess the improvement of the transport properties of this molecule, mono-, di- and tri-ester prodrugs were examined. These were assessed for stability and subsequent breakdown with respect to pH by HPLC. In vitro percutaneous absorption was observed using the triester, but not the ionic mono- or di-esters. The triester absorption could be potentiated using a range of enhancers with oleic acid being the most effective. Cyclodextrins (CD) have a role as absorption enhancers for peptide compounds across nasal epithelium. One potential mode of action is that CDs include these compounds, protect them from enzymic attack and thereby increase their residence time in the nasal epithelium. This study investigated the potential of CDs to protect ester prodrugs from enzymatic breakdown and prevent production of poorly transportable ionic species. Using a range of CD to ester molar ratios (10:1 to 2500:1) a small, but measurable, protection for the model esters (parabens) against esterase attack was observed. Possible mechanisms for this phenomenon are that CDs include the ester, making it unavailable for hydrolysis, the CDs may also affect the esterase in some way preventing access for the ester into the active site.
Resumo:
Topical and transdermal formulations are promising platforms for the delivery of drugs. A unit dose topical or transdermal drug delivery system that optimises the solubility of drugs within the vehicle provides a novel dosage form for efficacious delivery that also offers a simple manufacture technique is desirable. This study used Witepsol® H15 wax as a abase for the delivery system. One aspect of this project involved determination of the solubility of ibuprofen, flurbiprofen and naproxen in the was using microscopy, Higuchi release kinetics, HyperDSC and mathematical modelling techniques. Correlations between the results obtained via these techniques were noted with additional merits such as provision of valuable information on drug release kinetics and possible interactions between the drug and excipients. A second aspect of this project involved the incorporation of additional excipients: Tween 20 (T), Carbopol®971 (C) and menthol (M) to the wax formulation. On in vitro permeation through porcine skin, the preferred formulations were: ibuprofen (5% w/w) within Witepsol®H15 + 1% w/w T; flurbiprofen (10% w/w) within Witepsol®H15 + 1% w/w T; naproxen (5% w/w) within Witepsol®H15 + 1% w/w T + 1% C and sodium diclofenac (10% w/w) within Witepsol®H15 + 1% w/w T + 1% w/w T + 1% w/w C + 5% w/w M. Unit dose transdermal tablets containing ibuprofen and diclofenac were produced with improved flux compared to marketed products; Voltarol Emugel® demonstrated flux of 1.68x10-3 cm/h compared to 123 x 10-3 cm/h for the optimised product as detailed above; Ibugel Forte® demonstrated a permeation coefficient value of 7.65 x 10-3 cm/h compared to 8.69 x 10-3 cm/h for the optimised product as described above.
Resumo:
The primary aim of this research has been the investigation of the role of water structuring effects in the widely different extents of irritancy displayed by certain antibiotics. The compounds involved were members of the Lincomycin group of antibiotics. The aqueous solution behaviour of these co~pounds was studied using techniques such as vapour pressure osmometry end differential scanning calorimetry (D.S.C.). The effects of the antibiotics on water structure in hydrogel membrane preparations In which the equilibrium water content (E.W.C.) and constituent amounts of freezing and non-freezing water ware varied were also investigated using D.S.C. The permeability of water swollen hydrogel preparations to aqueous antibiotic solutions as well as other solutes were studied. A series of hydrogel preparations into which the antibiotics had been incorporated during polymerisation were developed and used in studies of the effects of the antibiotics end their water structure modifications on the permeation of a range of solutes.
Resumo:
The coagulase-negative staphylococci are the most frequent cause of sepsis associated with indwelling intravascular catheters. Current microbiological investigations to support the diagnosis of catheter-related sepsis (CRS) include the culture of blood and catheter tips, however positive results may reflect specimen contamination, or colonisation of the catheter rather than true sepsis. Previous serological approaches to assist in the diagnosis of CRS based on cellular staphylococcal antigens have been of limited value. In this current study, the serodiagnostic potential of an exocellular antigen produced by 7 strains of coagulase-negative staphylococci cultured in brain heart infusion broth was investigated. Antigenic material isolated by gel permeation from liquid culture was characterised by immunological techniques and chemical analysis. Characterisation of the exocellular antigen revealed a novel glycerophosphoglycolipid, termed lipid S. which shared antigenic determinants with lipoteichoic acid, but differed by comprising a glycerophosphate chain length of only 6 units. In addition, lipid S was immunologically distinct from diphosphatidyl glycerol, a constituent cell membrane phospho lipid. An indirect enzyme linked immunosorbent assay (ELISA) based on lipid S was subsequently developed and used to determine serum antibody levels (IgM and IgG) in 67 patients with CRS due to staphylococci, and 67 patients with a central venous catheter (CVC) in situ who exhibited no evidence of sepsis. The sensitivity and specificity of the lipid S IgG ELISA was 75% and 90% respectively whilst the IgM assay had sensitivity and specificity of 52% and 85%. The addition of GullSORereagent to the EL1SA procedure to remove competing serum IgG and rheumatoid factor did not significantly improve the performance of the IgM assay. The serological response in serial serum samples of 13 patients with CRS due to staphylococci was investigated. Elevated levels of antibody were detected at an early stage of infection, prior to the isolation of microorganisms by standard culture methods, and before the clinical presentation of sepsis in 3 patients. The lipid S ELISA was later optimised and a rapid 4-hour assay developed for the serodiagnosis of CRS. Serum IgG levels were determined in 40 patients with CRS due to staphylococci and 40 patients with a CVC in situ who exhibited no evidence of sepsis. The sensitivity and specificity of the rapid IgG assay was 70% and 100% respectively. Elevated serum antibody levels in patients with endocarditis, prosthetic joint infection and pyogenic spondylodiscitis due to Gram-positive cocci were also detected with the lipid S ELISA suggesting that the assay may facilitate the diagnosis of these infections. Unexpected increased levels of anti-lipid S IgG in 31% of control patients with sciatica suggested a possible microbial aetiology of this condition. Further investigation of some of these patients by culture of microdiscectomy tissue removed at operation, revealed the presence of low-virulent microorganisms in 37% of patients of which Propionibacterium aeries accounted for 85% of the positive culture isolates. The results suggested a previously unrecognised association between P. acnes and sciatica, which may have implications for the future management of the condition.
Resumo:
Azidoprofen {2-(4-azidophenyl)propionic acid; AZP}, an azido-substituted arylalkanoic acid, was investigated as a model soft drug candidate for a potential topical non-steroidal anti-inflammatory agent (NSAIA). Reversed-phase high performance liquid chromatography (HPLC) methods were developed for the assay of AZP, a series of ester analogues and their· degradation products. 1H-NMR spectroscopy was also employed as an analytical method in selected cases. Reduction of the azido-group to the corresponding amine has been proposed as a potential detoxification mechanism for compounds bearing this substituent. An in vitro assay to measure the susceptibility of azides towards reduction was developed using dithiothreitol as a model reducing agent. The rate of reduction of AZP was found to be base-dependent, hence supporting the postulated mechanism of thiol-mediated reduction via nucleophilic attack by the thiolate anion. Prodrugs may enhance topical bioavailability through the manipulation of physico-chemical properties of the parent drug. A series of ester derivatives of AZP were investigated for their susceptibility to chemical and enzymatic hydrolysis, which regenerates the parent acid. Use of alcoholic cosolvents with differing alkyl functions to that of the ester resulted in transesterification reactions, which were found to be enzyme-mediated. The skin penetration of AZP was assessed using an in vitro hairless mouse skin model, and silastic membrane in some cases. The rate of permeation of AZP was found to be a similar magnitude to that of the well established NSAIA ibuprofen. Penetration rates were dependent on the vehicle pH and drug concentration when solutions were employed. In contrast, flux was independent of pH when suspension formulations were used. Pretreatment of the skin with various enhancer regimes, including oleic acid and azone in propylene glycol, promoted the penetration of AZP. An intense IR absorption due to the azide group serves as a highly diagnostic marker, enabling azido compounds to be detected in the outer layers of the· stratum corneum following their application to skin, using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This novel application enabled a non-invasive examination of the percutaneous penetration enhancement of a model azido compound in vivo in man, in the presence of the enhancer oleic acid.
Resumo:
The lipophilic dihydrofolate reductase (DHFR) inhibitor m-azidopyrimethamine (MZP) was investigated for suitability for development as a topical antipsoriatic agent. The clinical features and treatments for psoriasis were reviewed. High performance liquid chromatography (HPLC) was employed as the main analytical method, with UV spectroscopy being used in some cases. Reduction of the azido-group was proposed as a potential detoxification mechanism for MZP. The rates of reduction of a series of substituted phenyl azide compounds by dithiothreitol were investigated and found to depend on the substitution pattern of the aryl azide molecular, with electron deficient azides exhibiting faster rates of reduction in the system studied. The rates of reduction of MZP and analogous compounds were also studied using this model. The skin penetration of MZP was assessed using an in vitro hairless mouse skin model. The rate of permeation (flux) of MZP across hairless mouse skin was found to be dependent on the quantity of propylene glycol used as cosolvent in the vehicle and the pH. The use of a pretreatment regime of oleic acid in propylene glycol was shown to greatly increase the penetration of MZP through the hairless mouse skin as compared to application without pretreatment, or pretreatment with other penetration enhancers. The metabolism of MZP was studied in in vitro models comprising skin homogenates, SV-K14 human keratinocyte cell cultures and skin commensal bacterial cultures. No conversion of MZP to the corresponding amine was detected in any of the models. The growth inhibitory properties of MZP were investigated in an in vitro SV-K14 human keratinocyte cell culture model and compared with those of other DHFR inhibitors. [14C]-pyrimethamine was shown to be taken up by the SV-K14 keratinocytes.
Resumo:
The chromosomal ß-lactamase of Pseudomonas aeruginosa SAlconst (a derepressed laboratory strain) was isolated and purified. Two peaks of activity were observed on gel permeation chromatography (one major peak mol. wt. 45 kD and one minor peak of 54 kD). Preparations from 12 clinical derepressed strains showed identical results. Chromosomal ß-lactamase production in both normal and derepressed P. aeruginosa strains was induced both by iron restricted growth conditions and by penicillin G. The majority of the enzyme (80-90%) was found in the periplasm and cytoplasm but a significant amount (2-20%) was associated with the outer membrane (OM). The growth conditions did not affect the distribution of the enzyme between subcellular fractions although higher activity was found in the cells grown under iron limitation and/ or in the presence of ß-lactams. The penicillanate sulphone inhibitor, tazobactam, displayed irreversible kinetics whilst cloxacillin, cefotaxime, ampicillin and penicillin G were all competitive inhibitors of the enzyme. Similar results were obtained for the Enterobacter cloacae P99 [ß-lactamase, but tazobactam displayed a non-classical kinetic pattern for the Staphylococcus aureus PC1 ß-lactamase. The residues involved in ß-lactam hydrolysis by the P aeruginosa SAlconst enzyme were detennined by affinity labelling with tazobactam. A tryptic digestion fragment of the inhibited enzyme contained the amino acids D, T, S, E, P, G, A, C, V, M, I, Y, F, H, K, R. This suggests the involvement of the conserved SVSK, DAE and KTG motifs found in all penicillin sensitive proteins. A model of the 3-D structure of the active site of the P aeruginosa SAlconst chromosomal ß-!actamase was constructed from the published amino acid sequence of P aeruginosa chromosomal ß-lactamase and the a-carbon coordinates of the S. aureus PCI ß-lactamase by homology modelling and energy minimisation. The crystal structure of tazobactam was determined and energy minimised. Computer graphics docking identified Ser 72 as a possible residue involved in a secondary attack on the C5 position of tazobactam after initial ß-lactam hydrolysis by serine 70. The enhanced activity of tazobactam over sulbactam might be explained by the triazole substituent which might participate in favourable hydrogen bonding between N3 and active site residues.
Resumo:
There are currently few biomaterials which combine controlled degradation rates with ease of melt processability. There are however, many applications ranging from surgical fixation devices to drug delivery systems which require such combination properties. The work in this thesis is an attempt to increase the availability of such materials. Polyhydroxybutyrate-polyhydroxyvalerate copolymers are a new class of potentially biodegradable materials, although little quantitative data relating to their in vitro and in vivo degradation behaviour exists. The hydrolytic degradation of these copolymers has been examined in vitro under conditions ranging from `physiological' to extremes of pH and elevated temperature. Progress of the degradation process was monitored by weight loss and water uptake measurement, x-ray diffractometry, optical and electron microscopy, together with changes in molecular weight by gel permeation chromatography. The extent to which the degradation mechanism could be modified by forming blends with polysaccharides and polycaprolactone was also investigated. Influence of the valerate content, molecular weight, crystallinity, together with the physical form of the sample, the pH and the temperature of the aqueous medium on the hydrolytic degradation was investigated. Its progress was characterised by an initial increase in the wet weight, with concurrent decrease in the dry weight as the amorphous regions of the polymer are eroded, thereby producing an increase in matrix porosity. With the polysaccharide blends, this initial rate is dramatically affected, and erosion of the polysaccharide from the matrix markedly increases the internal porosity which leads to the eventual collapse of the matrix, a process which occurs, but less rapidly, in the degradation of the unblended polyhydroxybutyrate-polyhydroxyvalerate copolymers. Surface energy measurement and goniophotometry proved potentially useful in monitoring the early stages of the degradation, where surface rather than bulk processes predominate and are characterised by little weight loss.
Resumo:
A hot filtration unit downstream of a 1kg/h fluidised bed fast pyrolysis reactor was designed and built. The filter unit operates at 450oC and consists of 1 exchangeable filter candle with reverse pulse cleaning system. Hot filtration experiments up to 7 hours were performed with beech wood as feedstock. It was possible to produce fast pyrolysis oils with a solid content below 0.01 wt%. The additional residence time of the pyrolysis vapours and secondary vapour cracking on the filter cake caused an increase of non-condensable gases at the expense of organic liquid yield. The oils produced with hot filtration showed superior quality properties regarding viscosity than standard pyrolysis oils. The oils were analysed by rotational viscosimetry and gel permeation chromatography before and after accelerated aging. During filtration the separated particulates accumulate on the candle surface and build up the filter cake. The filter cake leads to an increase in pressure drop between the raw gas and the clean gas side of the filter candle. At a certain pressure drop the filter cake has to be removed by reverse pulse cleaning to regenerate the pressure drop. The experiments showed that successful pressure drop recovery was possible during the initial filtration cycles, thereafter further cycles showed minor pressure drop recovery and therefore a steady increase in differential pressure. Filtration with pre-coating the candle to form an additional layer between the filter candle and cake resulted in total removal of the dust cake.
Resumo:
The aim of this research project is to evaluate whether or not pullulan films are suitable to buccal drug delivery of a phosphodiesterase5 (PDE5) inhibitor yonkenafil, which was discovered in our research group and currently is under phase II clinical trial for treatment of erectile dysfunction. Variable formulations of pullulan films were designed and the films were prepared. Mechanical properties of the films, in vitro drug release and polymer dissolution, in vitro drug penetration through porcine esophageal mucosa were investigated. The plasticization effects of solvents, polyols and acids to the films were studied by tensile test, and differential scanning calorimetry, thermogravimetric analysis, fourier transform-infrared, scanning electron microscopy, optical microscopy was applied to analyse the structure and chemical-bonding between pullulan and the additives within the films. Release mathematics models were used in the study of the mechanism of drug releases and polymer dissolutions. Ethanol, menthol, fatty acids, and sodium dodecyl sulphate were employed as penetration enhancers to pretreat the tissue. Various plasticizers and acids were applied into the films and the result showed polyethylene glycol 400 and 600 had the excellent plasticization effect on the drug-free pullulan films, while lactic acid was the best plasticizer for the drug-loaded films. Both PEG400 and lactic acid had a great effect on the drug release from the films in vitro, and all the results indicated that the hydroxyl and carboxyl groups of pullulan and the additives influenced the mechanical properties of the films significantly, and also altered drug release mechanisms. Ethanol shows the greatest enhancing ability on the drug permeation through the porcine esophageal mucosa. A possible mechanism for this is that ethanol interferes with the structure of the lipids in the mucosa, resulting in increased partitioning of the drug into the membrane.