20 resultados para osmosis
Resumo:
Groundwater salinity is a widespread problem that contributes to the freshwater deficit of humanity. Consequently, where conventional energy supply is also lacking, organic Rankine cycle (ORC) engines are being considered as a feasible option to harness readily available low-grade heat (<180°C) to drive the desalination of the saline water via reverse osmosis (RO). However, this application is still not very well developed, and has significantly high specific energy consumption (SEC). Hence, this study explores the isothermal expansion of the ORC working fluid to achieve improved efficiency for driving a batch-RO desalination process, "DesaLink". Here, the working fluid is directly vaporized in the expansion cylinder which is heated externally by heat transfer fluid, thus obviating the need for a separate external boiler and high-pressure piping. Experimental investigations with R245fa have shown cycle efficiency of 8.8%. And it is predicted that the engine could drive DesaLink to produce 256 L of freshwater per 8 h per day, from 4000 ppm saline water, with a thermal and mechanical SEC of 2.5 and 0.36 kWh/m3, respectively, representing a significant improvement on previously reported or predicted SEC values. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.
Resumo:
A new type of fibre-optic biochemical concentration sensor based on a polymer optical fibre Bragg grating (POFBG) is proposed. The wavelength of the POFBG varies as a function of analyte concentration. The feasibility of this sensing concept is demonstrated by a saline concentration sensor. When polymer fibre is placed in a water based solution the process of osmosis takes place in this water-fibre system. An osmotic pressure which is proportional to the solution concentration, will apply to the fibre in addition to the hydraulic pressure. It tends to drive the water content out of the fibre and into the surrounding solution. When the surrounding solution concentration increases the osmotic pressure increases to drive the water content out of the fibre, consequently increasing the differential hydraulic pressure and reducing the POFBG wavelength. This process will stop once there is a balance between the osmotic pressure and the differential hydraulic pressure. Similarly when the solution concentration decreases the osmotic pressure decreases, leading to a dominant differential hydraulic pressure which drives the water into the fibre till a new pressure balance is established. Therefore the water content in the polymer fibre - and consequently the POFBG wavelength - depends directly on the solution concentration. A POFBG wavelength change of 0.9 nm was measured for saline concentration varying from 0 to 22%. For a wavelength interrogation system with a resolution of 1 pm, a measurement of solution concentration of 0.03% can be expected.
Resumo:
Desalination is a costly means of providing freshwater. Most desalination plants use either reverse osmosis (RO) or thermal distillation. Both processes have drawbacks: RO is efficient but uses expensive electrical energy; thermal distillation is inefficient but uses less expensive thermal energy. This work aims to provide an efficient RO plant that uses thermal energy. A steam-Rankine cycle has been designed to drive mechanically a batch-RO system that achieves high recovery, without the high energy penalty typically incurred in a continuous-RO system. The steam may be generated by solar panels, biomass boilers, or as an industrial by-product. A novel mechanical arrangement has been designed for low cost, and a steam-jacketed arrangement has been designed for isothermal expansion and improved thermodynamic efficiency. Based on detailed heat transfer and cost calculations, a gain output ratio of 69-162 is predicted, enabling water to be treated at a cost of 71 Indian Rupees/m3 at small scale. Costs will reduce with scale-up. Plants may be designed for a wide range of outputs, from 5 m3/day, up to commercial versions producing 300 m3/day of clean water from brackish groundwater.
Resumo:
The objective of this project is to design a new desalination system with energy efficiency approaching the theoretical thermodynamic limit—even at high recovery ratio. The system uses reverse osmosis (RO) and a batch principle of operation to overcome the problem of concentration factor which prevents continuous-flow RO systems from ever reaching this limit and thus achieving the minimum possible specific energy consumption, SEC. Batch operation comprises a cycle in three phases: pressurisation, purge, and refill. Energy recovery is inherent to the design. Unlike in closed-circuit desalination (CCD), no feedwater is added to the pressure circuit during the pressurisation phase. The batch configuration is compared to standard configurations such as continuous single-stage RO (with energy recovery) and CCD. Theoretical analysis has shown that the new system is able to use 33% less energy than CCD at a recovery ratio of 80%. A prototype has been constructed using readily available parts and tested with feedwater salinities and recovery ratios ranging from 2,000 to 5,000 ppm and 17.2–70.6%, respectively. Results compare very well against the standard configurations. For example, with feedwater containing 5,000 ppm NaCl and recovery ratio of 69%, a hydraulic SEC of 0.31 kWh/m3 was obtained—better than the minimum theoretically possible with a single-stage continuous flow system with energy recovery device.
Resumo:
In brackish groundwater desalination, high recovery ratio (of fresh water from saline feed) is desired to minimise concentrate reject. To this effect, previous studies have developed a batch reverse osmosis (RO) desalination system, DesaLink, which proposed to expand steam in a reciprocating piston cylinder and transmit the driving force through a linkage crank mechanism to pressurise batches of saline water (recirculating) in a water piston cylinder unto RO membranes. However, steam is largely disadvantaged at operation from low temperature (< 150oC) thermal sources; and organic working fluids are more viable, though, the obtainable thermal cycle efficiencies are generally low with low temperatures. Consequently, this thesis proposed to investigate the use of organic working fluid Rankine cycle (ORC) with isothermal expansion, to drive the DesaLink machine, at improved thermal efficiency from low temperature thermal sources. Following a review of the methods of achieving isothermal expansion, ‘liquid flooded expansion’ and ‘expansion chamber surface heating’ were identified as potential alternative methods. Preliminary experimental comparative analysis of variants of the heated expansion chamber technique of effecting isothermal expansion favoured a heated plain wall technique, and as such was adopted for further optimisation and development. Further, an optimised isothermal ORC engine was built and tested at < 95oC heat source temperature, with R245fa working fluid – which was selected from 16 working fluids that were analysed for isothermal operation. Upon satisfactory performance of the test engine, a larger (10 times) version was built and coupled to drive the DesaLink system. Operating the integrated ORC-RO DesaLink system, gave freshwater (approximately 500 ppm) production of about 12 litres per hour (from 4000 ppm feed water) at a recovery ratio of about 0.7 and specific energy consumption of 0.34 kWh/m3; and at a thermal efficiency of 7.7%. Theoretical models characterising the operation and performance of the integrated system was developed and utilised to access the potential field performance of the system, when powered by two different thermal energy sources – solar and industrial bakery waste heat – as case studies.