71 resultados para optical self-focusing
Resumo:
This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.
Resumo:
This paper describes experimental and numerical results of the plasma-assisted microfabrication of subwavelength structures by means of point-by point femtosecond laser inscription. It is shown that the spatio-temporal evolution of light and plasma patterns critically depend on input power. Subwavelength inscription corresponds to the supercritical propagation regimes when pulse power is several times self-focusing threshold. Experimental and numerical profiles show quantitative agreement.
Resumo:
We demonstrate numerically light-pulse combining and pulse compression using wave-collapse (self-focusing) energy-localization dynamics in a continuous-discrete nonlinear system, as implemented in a multicore fiber (MCF) using one-dimensional (1D) and 2D core distribution designs. Large-scale numerical simulations were performed to determine the conditions of the most efficient coherent combining and compression of pulses injected into the considered MCFs. We demonstrate the possibility of combining in a single core 90% of the total energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. A pulse compression factor of about 720 can be obtained with a 19-core ring MCF.
Resumo:
This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.
Resumo:
In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.
Resumo:
We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.
Resumo:
Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.
Resumo:
In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.
Resumo:
Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.
Resumo:
We study solutions of the nonlinear Schrödinger equation (NLSE) with gain, describing optical pulse propagation in an amplifying medium. We construct a semiclassical self-similar solution with a parabolic temporal variation that corresponds to the energy-containing core of the asymptotically propagating pulse in the amplifying medium. We match the self-similar core through Painlevé functions to the solution of the linearized equation that corresponds to the low-amplitude tails of the pulse. The analytic solution accurately reproduces the numerically calculated solution of the NLSE.
Resumo:
We propose a scheme for 211 optical regeneration based on self-phase modulation in fiber and quasi-continuous filtering. Numerical simulations demonstrate the possibility of increasing the transmission reach from 3500 to more than 6000 km at 10 Gb/s using 100-km spans. Spectral broadening is shown to be small using this technique, indicating its suitability for wavelength-division-multiplexing regeneration.