18 resultados para open system
Resumo:
Reliability of power converters is of crucial importance in switched reluctance motor drives used for safety-critical applications. Open-circuit faults in power converters will cause the motor to run in unbalanced states, and if left untreated, they will lead to damage to the motor and power modules, and even cause a catastrophic failure of the whole drive system. This study is focused on using a single current sensor to detect open-circuit faults accurately. An asymmetrical half-bridge converter is considered in this study and the faults of single-phase open and two-phase open are analysed. Three different bus positions are defined. On the basis of a fast Fourier transform algorithm with Blackman window interpolation, the bus current spectrums before and after open-circuit faults are analysed in details. Their fault characteristics are extracted accurately by the normalisations of the phase fundamental frequency component and double phase fundamental frequency component, and the fault characteristics of the three bus detection schemes are also compared. The open-circuit faults can be located by finding the relationship between the bus current and rotor position. The effectiveness of the proposed diagnosis method is validated by the simulation results and experimental tests.
Resumo:
In this paper, a new open-winding control strategy is proposed for a brushless doubly fed reluctance generator (BDFRG) used for stand-alone wind turbine or ship generators. The BDFRG is characterized with two windings on the stator: a power winding and a control winding. The control winding is fed with dual two-level three-phase converters, and a vector control scheme based on space vector pulsewidth modulation is designed. Compared with traditional three-level inverter systems, the dc-link voltage and the voltage rating of power devices in the proposed system are reduced by 50% while still greatly improving the reliability, redundancy, and fault tolerance of the proposed system by increasing the switching modes. Its performance is evaluated by simulation in MATLAB/Simulink and an experimental study on a 42-kW prototype machine.
Resumo:
A DSP implementation of Space Vector PWM (SVPWM) using constant V/Hz control for the open winding doubly-fed generator is proposed. This control of SVPWM modulation mode and open winding structure combination has the high voltage utilization ratio, greatly improves the control precision of the system, and reduces the stator winding output current distortion rate, though the complexity of the system is increased. This paper describes the basic principle of SVPWM and discusses the particularity of SVPWM waveform generated by hybrid vector under the condition of open winding. This method is applied to a state of doubly-fed wind power generator. The experimental verification shows that this control method can make the output voltage amplitude of the doubly-fed induction generator be 380V and the frequency be 50Hz by using of TMS32028335 chip based on constant V/Hz control of symmetric SVPWM modulation wave.