25 resultados para non-return
Resumo:
This study expands the current knowledge base on the nature, causes and fate of unused medicines in primary care. Three methodologies were used and participants for each element were sampled from the population of Eastern Birmingham PCT. A detailed assessment was made of medicines returned to pharmacies and GP surgeries for destruction and a postal questionnaire covering medicines use and disposal was used to patients randomly selected from the electoral roll. The content of this questionnaire was informed by qualitative data from a group interview on the subject. By use of these three methods it was possible to triangulate the data, providing a comprehensive assessment of unused medicines. Unused medicines were found to be ubiquitous in primary care and cardiovascular, diabetic and respiratory medicines are unused in substantial quantities, accounting for a considerable proportion of the total financial value of all unused medicines. Additionally, analgesic and psychoactive medicines were highlighted as being unused in sufficient quantities for concern. Anti-infective medicines also appear to be present and unused in a substantial proportion of patients’ homes. Changes to prescribed therapy and non-compliance were identified as important factors leading to the generation of unused medicines. However, a wide array of other elements influence the quantities and types of medicines that are unused including the concordancy of GP consultations and medication reviews and patient factors such as age, sex or ethnicity. Medicines were appropriately discarded by 1 in 3 patients through return to a medical or pharmaceutical establishment. Inappropriate disposal was by placing in household refuse or through grey and black water with the possibility of hoarding or diversion also being identified. No correlations wre found between the weight of unused medicines and any clinical or financial factor. The study has highlighted unused medicines to be an issue of some concern and one that requires further study.
Resumo:
This paper studies the performance of a typical non-slope matched transoceanic submarine link using 20Gb/s channel rate and RZ-DPSK modulation with different duty cycles. Through comparison with direct error counting, we have also demonstrated the limitations of the available numerical approaches to the BER estimation for return-to-zero differential phase-shift keying (RZ-DPSK). The numerical results have been confirmed by experiments, and indicate that 20 Gb/s RZ-DPSK transmission is a feasible technique for the upgrade of existing submarine links.
Resumo:
Topic management by non-native speakers (NNSs) during informal conversations has received comparatively little attention from researchers, and receives surprisingly little attention in second language learning and teaching. This article reports on one of the topic management strategies employed by international students during informal, social interactions with native-speaker peers, exploring the process of maintaining topic continuity following temporary suspensions of topics. The concept of side sequences is employed to illustrate the nature of different types of topic suspension, as well as the process of jointly negotiating a return to the topic. Extracts from the conversations show that such sequences were not exclusively occasioned by language difficulties, and that the non-native speaker participants were able to effect successful returns to the main topic of the conversations.
Bit-error rate performance of 20 Gbit/s WDM RZ-DPSK non-slope matched submarine transmission systems
Resumo:
Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.
Resumo:
Direct computation of the bit-error rate (BER) and laboratory experiments are used to assess the performance of a non-slope matched transoceanic submarine transmission link operating at 20Gb/s channel rate and employing return-to-zero differential-phase shift keying (RZ-DPSK) signal modulation. Using this system as an example, we compare the accuracies of the existing theoretical approaches to the BER estimation for the RZ-DPSK format.
Resumo:
This paper studies the performance of a typical non-slope matched transoceanic submarine link using 20Gb/s channel rate and RZ-DPSK modulation with different duty cycles. Through comparison with direct error counting, we have also demonstrated the limitations of the available numerical approaches to the BER estimation for return-to-zero differential phase-shift keying (RZ-DPSK). The numerical results have been confirmed by experiments, and indicate that 20 Gb/s RZ-DPSK transmission is a feasible technique for the upgrade of existing submarine links.
Resumo:
We propose a computationally efficient method to the per-channel dispersion optimisation applied to 50 GHz-spaced N × 20-Gbit/s wavelength division multiplexing return-to-zero differential phase shift keying transmission in non-zero dispersion-shifted fibre based submarine systems. Crown Copyright © 2010.
Bit-error rate performance of 20 Gbit/s WDM RZ-DPSK non-slope matched submarine transmission systems
Resumo:
Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.
Resumo:
Direct computation of the bit-error rate (BER) and laboratory experiments are used to assess the performance of a non-slope matched transoceanic submarine transmission link operating at 20Gb/s channel rate and employing return-to-zero differential-phase shift keying (RZ-DPSK) signal modulation. Using this system as an example, we compare the accuracies of the existing theoretical approaches to the BER estimation for the RZ-DPSK format. © 2007 Optical Society of America.
Resumo:
Background: Electrosurgery units are widely employed in modern surgery. Advances in technology have enhanced the safety of these devices, nevertheless, accidental burns are still regularly reported. This study focuses on possible causes of sacral burns as complication of the use of electrosurgery. Burns are caused by local densifications of the current, but the actual pathway of current within patient's body is unknown. Numerical electromagnetic analysis can help in understanding the issue. Methods: To this aim, an accurate heterogeneous model of human body (including seventy-seven different tissues), electrosurgery electrodes, operating table and mattress was build to resemble a typical surgery condition. The patient lays supine on the mattress with the active electrode placed onto the thorax and the return electrode on his back. Common operating frequencies of electrosurgery units were considered. Finite Difference Time Domain electromagnetic analysis was carried out to compute the spatial distribution of current density within the patient's body. A differential analysis by changing the electrical properties of the operating table from a conductor to an insulator was also performed. Results: Results revealed that distributed capacitive coupling between patient body and the conductive operating table offers an alternative path to the electrosurgery current. The patient's anatomy, the positioning and the different electromagnetic properties of tissues promote a densification of the current at the head and sacral region. In particular, high values of current density were located behind the sacral bone and beneath the skin. This did not occur in the case of non-conductive operating table. Conclusion: Results of the simulation highlight the role played from capacitive couplings between the return electrode and the conductive operating table. The concentration of current density may result in an undesired rise in temperature, originating burns in body region far from the electrodes. This outcome is concordant with the type of surgery-related sacral burns reported in literature. Such burns cannot be immediately detected after surgery, but appear later and can be confused with bedsores. In addition, the dosimetric analysis suggests that reducing the capacity coupling between the return electrode and the operating table can decrease or avoid this problem. © 2013 Bifulco et al.; licensee BioMed Central Ltd.