34 resultados para multi-class classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional feed forward Neural Networks have used the sum-of-squares cost function for training. A new cost function is presented here with a description length interpretation based on Rissanen's Minimum Description Length principle. It is a heuristic that has a rough interpretation as the number of data points fit by the model. Not concerned with finding optimal descriptions, the cost function prefers to form minimum descriptions in a naive way for computational convenience. The cost function is called the Naive Description Length cost function. Finding minimum description models will be shown to be closely related to the identification of clusters in the data. As a consequence the minimum of this cost function approximates the most probable mode of the data rather than the sum-of-squares cost function that approximates the mean. The new cost function is shown to provide information about the structure of the data. This is done by inspecting the dependence of the error to the amount of regularisation. This structure provides a method of selecting regularisation parameters as an alternative or supplement to Bayesian methods. The new cost function is tested on a number of multi-valued problems such as a simple inverse kinematics problem. It is also tested on a number of classification and regression problems. The mode-seeking property of this cost function is shown to improve prediction in time series problems. Description length principles are used in a similar fashion to derive a regulariser to control network complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Textured regions in images can be defined as those regions containing a signal which has some measure of randomness. This thesis is concerned with the description of homogeneous texture in terms of a signal model and to develop a means of spatially separating regions of differing texture. A signal model is presented which is based on the assumption that a large class of textures can adequately be represented by their Fourier amplitude spectra only, with the phase spectra modelled by a random process. It is shown that, under mild restrictions, the above model leads to a stationary random process. Results indicate that this assumption is valid for those textures lacking significant local structure. A texture segmentation scheme is described which separates textured regions based on the assumption that each texture has a different distribution of signal energy within its amplitude spectrum. A set of bandpass quadrature filters are applied to the original signal and the envelope of the output of each filter taken. The filters are designed to have maximum mutual energy concentration in both the spatial and spatial frequency domains thus providing high spatial and class resolutions. The outputs of these filters are processed using a multi-resolution classifier which applies a clustering algorithm on the data at a low spatial resolution and then performs a boundary estimation operation in which processing is carried out over a range of spatial resolutions. Results demonstrate a high performance, in terms of the classification error, for a range of synthetic and natural textures

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The G-protein coupled receptors--or GPCRs--comprise simultaneously one of the largest and one of the most multi-functional protein families known to modern-day molecular bioscience. From a drug discovery and pharmaceutical industry perspective, the GPCRs constitute one of the most commercially and economically important groups of proteins known. The GPCRs undertake numerous vital metabolic functions and interact with a hugely diverse range of small and large ligands. Many different methodologies have been developed to efficiently and accurately classify the GPCRs. These range from motif-based techniques to machine learning as well as a variety of alignment-free techniques based on the physiochemical properties of sequences. We review here the available methodologies for the classification of GPCRs. Part of this work focuses on how we have tried to build the intrinsically hierarchical nature of sequence relations, implicit within the family, into an adaptive approach to classification. Importantly, we also allude to some of the key innate problems in developing an effective approach to classifying the GPCRs: the lack of sequence similarity between the six classes that comprise the GPCR family and the low sequence similarity to other family members evinced by many newly revealed members of the family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban regions present some of the most challenging areas for the remote sensing community. Many different types of land cover have similar spectral responses, making them difficult to distinguish from one another. Traditional per-pixel classification techniques suffer particularly badly because they only use these spectral properties to determine a class, and no other properties of the image, such as context. This project presents the results of the classification of a deeply urban area of Dudley, West Midlands, using 4 methods: Supervised Maximum Likelihood, SMAP, ECHO and Unsupervised Maximum Likelihood. An accuracy assessment method is then developed to allow a fair representation of each procedure and a direct comparison between them. Subsequently, a classification procedure is developed that makes use of the context in the image, though a per-polygon classification. The imagery is broken up into a series of polygons extracted from the Marr-Hildreth zero-crossing edge detector. These polygons are then refined using a region-growing algorithm, and then classified according to the mean class of the fine polygons. The imagery produced by this technique is shown to be of better quality and of a higher accuracy than that of other conventional methods. Further refinements are suggested and examined to improve the aesthetic appearance of the imagery. Finally a comparison with the results produced from a previous study of the James Bridge catchment, in Darleston, West Midlands, is made, showing that the Polygon classified ATM imagery performs significantly better than the Maximum Likelihood classified videography used in the initial study, despite the presence of geometric correction errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SPOT simulation imagery was acquired for a test site in the Forest of Dean in Gloucestershire, U.K. This data was qualitatively and quantitatively evaluated for its potential application in forest resource mapping and management. A variety of techniques are described for enhancing the image with the aim of providing species level discrimination within the forest. Visual interpretation of the imagery was more successful than automated classification. The heterogeneity within the forest classes, and in particular between the forest and urban class, resulted in poor discrimination using traditional `per-pixel' automated methods of classification. Different means of assessing classification accuracy are proposed. Two techniques for measuring textural variation were investigated in an attempt to improve classification accuracy. The first of these, a sequential segmentation method, was found to be beneficial. The second, a parallel segmentation method, resulted in little improvement though this may be related to a combination of resolution in size of the texture extraction area. The effect on classification accuracy of combining the SPOT simulation imagery with other data types is investigated. A grid cell encoding technique was selected as most appropriate for storing digitised topographic (elevation, slope) and ground truth data. Topographic data were shown to improve species-level classification, though with sixteen classes overall accuracies were consistently below 50%. Neither sub-division into age groups or the incorporation of principal components and a band ratio significantly improved classification accuracy. It is concluded that SPOT imagery will not permit species level classification within forested areas as diverse as the Forest of Dean. The imagery will be most useful as part of a multi-stage sampling scheme. The use of texture analysis is highly recommended for extracting maximum information content from the data. Incorporation of the imagery into a GIS will both aid discrimination and provide a useful management tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a thorough and principled investigation into the application of artificial neural networks to the biological monitoring of freshwater. It contains original ideas on the classification and interpretation of benthic macroinvertebrates, and aims to demonstrate their superiority over the biotic systems currently used in the UK to report river water quality. The conceptual basis of a new biological classification system is described, and a full review and analysis of a number of river data sets is presented. The biological classification is compared to the common biotic systems using data from the Upper Trent catchment. This data contained 292 expertly classified invertebrate samples identified to mixed taxonomic levels. The neural network experimental work concentrates on the classification of the invertebrate samples into biological class, where only a subset of the sample is used to form the classification. Other experimentation is conducted into the identification of novel input samples, the classification of samples from different biotopes and the use of prior information in the neural network models. The biological classification is shown to provide an intuitive interpretation of a graphical representation, generated without reference to the class labels, of the Upper Trent data. The selection of key indicator taxa is considered using three different approaches; one novel, one from information theory and one from classical statistical methods. Good indicators of quality class based on these analyses are found to be in good agreement with those chosen by a domain expert. The change in information associated with different levels of identification and enumeration of taxa is quantified. The feasibility of using neural network classifiers and predictors to develop numeric criteria for the biological assessment of sediment contamination in the Great Lakes is also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the important bioinformatics problem of predicting protein function from a protein's primary sequence. We consider the functional classification of G-Protein-Coupled Receptors (GPCRs), whose functions are specified in a class hierarchy. We tackle this task using a novel top-down hierarchical classification system where, for each node in the class hierarchy, the predictor attributes to be used in that node and the classifier to be applied to the selected attributes are chosen in a data-driven manner. Compared with a previous hierarchical classification system selecting classifiers only, our new system significantly reduced processing time without significantly sacrificing predictive accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article categorises manufacturing strategy design processes and presents the characteristics of resulting strategies. This work will therefore assist practitioners to appreciate the implications of planning activities. The article presents a framework for classifying manufacturing strategy processes and the resulting strategies. Each process and respective strategy is then considered in detail. In this consideration the preferred approach is presented for formulating a world class manufacturing strategy. Finally, conclusions and recommendations for further work are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sentiment analysis concerns about automatically identifying sentiment or opinion expressed in a given piece of text. Most prior work either use prior lexical knowledge defined as sentiment polarity of words or view the task as a text classification problem and rely on labeled corpora to train a sentiment classifier. While lexicon-based approaches do not adapt well to different domains, corpus-based approaches require expensive manual annotation effort. In this paper, we propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon with preferences on expectations of sentiment labels of those lexicon words being expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie-review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than existing weakly-supervised sentiment classification methods despite using no labeled documents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joint sentiment-topic (JST) model was previously proposed to detect sentiment and topic simultaneously from text. The only supervision required by JST model learning is domain-independent polarity word priors. In this paper, we modify the JST model by incorporating word polarity priors through modifying the topic-word Dirichlet priors. We study the polarity-bearing topics extracted by JST and show that by augmenting the original feature space with polarity-bearing topics, the in-domain supervised classifiers learned from augmented feature representation achieve the state-of-the-art performance of 95% on the movie review data and an average of 90% on the multi-domain sentiment dataset. Furthermore, using feature augmentation and selection according to the information gain criteria for cross-domain sentiment classification, our proposed approach performs either better or comparably compared to previous approaches. Nevertheless, our approach is much simpler and does not require difficult parameter tuning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing data is routinely used in ecology to investigate the relationship between landscape pattern as characterised by land use and land cover maps, and ecological processes. Multiple factors related to the representation of geographic phenomenon have been shown to affect characterisation of landscape pattern resulting in spatial uncertainty. This study investigated the effect of the interaction between landscape spatial pattern and geospatial processing methods statistically; unlike most papers which consider the effect of each factor in isolation only. This is important since data used to calculate landscape metrics typically undergo a series of data abstraction processing tasks and are rarely performed in isolation. The geospatial processing methods tested were the aggregation method and the choice of pixel size used to aggregate data. These were compared to two components of landscape pattern, spatial heterogeneity and the proportion of landcover class area. The interactions and their effect on the final landcover map were described using landscape metrics to measure landscape pattern and classification accuracy (response variables). All landscape metrics and classification accuracy were shown to be affected by both landscape pattern and by processing methods. Large variability in the response of those variables and interactions between the explanatory variables were observed. However, even though interactions occurred, this only affected the magnitude of the difference in landscape metric values. Thus, provided that the same processing methods are used, landscapes should retain their ranking when their landscape metrics are compared. For example, highly fragmented landscapes will always have larger values for the landscape metric "number of patches" than less fragmented landscapes. But the magnitude of difference between the landscapes may change and therefore absolute values of landscape metrics may need to be interpreted with caution. The explanatory variables which had the largest effects were spatial heterogeneity and pixel size. These explanatory variables tended to result in large main effects and large interactions. The high variability in the response variables and the interaction of the explanatory variables indicate it would be difficult to make generalisations about the impact of processing on landscape pattern as only two processing methods were tested and it is likely that untested processing methods will potentially result in even greater spatial uncertainty. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Projection of a high-dimensional dataset onto a two-dimensional space is a useful tool to visualise structures and relationships in the dataset. However, a single two-dimensional visualisation may not display all the intrinsic structure. Therefore, hierarchical/multi-level visualisation methods have been used to extract more detailed understanding of the data. Here we propose a multi-level Gaussian process latent variable model (MLGPLVM). MLGPLVM works by segmenting data (with e.g. K-means, Gaussian mixture model or interactive clustering) in the visualisation space and then fitting a visualisation model to each subset. To measure the quality of multi-level visualisation (with respect to parent and child models), metrics such as trustworthiness, continuity, mean relative rank errors, visualisation distance distortion and the negative log-likelihood per point are used. We evaluate the MLGPLVM approach on the ‘Oil Flow’ dataset and a dataset of protein electrostatic potentials for the ‘Major Histocompatibility Complex (MHC) class I’ of humans. In both cases, visual observation and the quantitative quality measures have shown better visualisation at lower levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective clinical decision making depends upon identifying possible outcomes for a patient, selecting relevant cues, and processing the cues to arrive at accurate judgements of each outcome's probability of occurrence. These activities can be considered as classification tasks. This paper describes a new model of psychological classification that explains how people use cues to determine class or outcome likelihoods. It proposes that clinicians respond to conditional probabilities of outcomes given cues and that these probabilities compete with each other for influence on classification. The model explains why people appear to respond to base rates inappropriately, thereby overestimating the occurrence of rare categories, and a clinical example is provided for predicting suicide risk. The model makes an effective representation for expert clinical judgements and its psychological validity enables it to generate explanations in a form that is comprehensible to clinicians. It is a strong candidate for incorporation within a decision support system for mental-health risk assessment, where it can link with statistical and pattern recognition tools applied to a database of patients. The symbiotic combination of empirical evidence and clinical expertise can provide an important web-based resource for risk assessment, including multi-disciplinary education and training. © 2002 Informa UK Ltd All rights reserved.