18 resultados para mesh-free method
Resumo:
Wireless Mesh Networks (WMNs) have emerged as a key technology for the next generation of wireless networking. Instead of being another type of ad-hoc networking, WMNs diversify the capabilities of ad-hoc networks. Several protocols that work over WMNs include IEEE 802.11a/b/g, 802.15, 802.16 and LTE-Advanced. To bring about a high throughput under varying conditions, these protocols have to adapt their transmission rate. This paper proposes a scheme to improve channel conditions by performing rate adaptation along with multiple packet transmission using packet loss and physical layer condition. Dynamic monitoring, multiple packet transmission and adaptation to changes in channel quality by adjusting the packet transmission rates according to certain optimization criteria provided greater throughput. The key feature of the proposed method is the combination of the following two factors: 1) detection of intrinsic channel conditions by measuring the fluctuation of noise to signal ratio via the standard deviation, and 2) the detection of packet loss induced through congestion. The authors show that the use of such techniques in a WMN can significantly improve performance in terms of the packet sending rate. The effectiveness of the proposed method was demonstrated in a simulated wireless network testbed via packet-level simulation.
Resumo:
We demonstrate an effective decision-directed-free blind phase noise compensation method for CO-OFDM transmission. By applying this technique, the common phase error can be accurately estimated using as few as three test phases.
Resumo:
Membrane proteins are localised within a lipid bilayer; in order to purify them for functional and structural studies the first step must involve solubilising or extracting the protein from these lipids. To date this has been achieved using detergents which disrupt the bilayer and bind to the protein in the transmembrane region. However finding conditions for optimal extraction, without destabilising protein structure is time consuming and expensive. Here we present a recently-developed method using a styrene maleic acid (SMA) co-polymer instead of detergents. The SMA co-polymer extracts membrane proteins in a small disc of lipid bilayer which can be used for affinity chromatography purification, thus enabling the purification of membrane proteins while maintaining their native lipid bilayer environment.