23 resultados para macromolecules


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of novel block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry. This chemistry is simple and allows the fabrication of well-defined block copolymers with controllable block lengths. The block copolymers, designed for use as interfacial adhesive layers in organic photovoltaics to enhance contact between the photoactive and hole transport layers, comprise printable poly(3-hexylthiophene)-block-poly(neopentyl p-styrenesulfonate), P3HT-b-PNSS. Subsequently, they are converted to P3HT-b-poly(p-styrenesulfonate), P3HT-b-PSS, following deposition and thermal treatment at 150 °C. Grazing incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS) revealed that thin films of the amphiphilic block copolymers comprise lamellar nanodomains of P3HT crystallites that can be pushed further apart by increasing the PSS block lengths. The approach of using a thermally modifiable block allows deposition of this copolymer from a single organic solvent and subsequent conversion to an amphiphilic layer by nonchemical means, particularly attractive to large scale roll-to-roll industrial printing processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was conducted to create a pH-responsive layer, in which a small change in the individual polyacid or polybase gel length was transferred into a larger motion that curls up the gel. It was observed that the transfer of motion from a linear displacement into a curved displacement through the geometric design effectively increases the displacement rate. A robust, reversible, and chemically driven mechanical actuator was was produced that demonstrated its response over many pH oscillations. The affine nature of the triblock copolymers, demonstrated for for the polyacid and polybase indicated that the effect will also function at some smaller length scales, which is appropriate for a working biomimetic and soft nanotechnology device. The study also demonstrated the potential applicability of these polymeric gels and suggested the fabrication of related molecular machines and devices based on the principles of soft nanotechnology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incorporation of catechols into polymers has long been of interest due to their ability to chelate heavy metals and their use in the design of adhesives, metal-polymer nanocomposites, antifouling coatings, and so on. This paper reports, for the first time, the reversible addition-fragmentation chain transfer (RAFT) polymerization of a protected catechol-inspired monomer, 3,4-dimethoxystyrene (DMS), using commercially available trithiocarbonate, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT), as a chain transfer agent. Our identified RAFT system produces well-defined polymers across a range of molecular weights (5-50 kg/mol) with low molar mass dispersities (Mw/Mn < 1.3). Subsequent facile demethylation of poly(3,4-dimethoxystyrene) (PDMS) yields poly(3,4-dihydroxystyrene) (PDHS), a catechol-bearing polymer, in quantitative yields. Semiquantitative zinc binding capacity analysis of both polymers using SEM/EDXA has demonstrated that both PDMS and PDHS have considerable surface binding (65% and 87%, respectively), although the films deposited from PDMS are of a better quality and processability due to solubility and lower processing temperatures. © 2014 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isoguanosine-containing dendritic small molecules self-assemble into decameric nucleodendrimers as observed by 1D NMR spectroscopy, 2D DOSY, and mass spectrometry. In particular, apolar building blocks readily form pentameric structures in acetonitrile while the presence of alkali metals promotes the formation of stable decameric assemblies with a preference for cesium ions. Remarkably, co-incubation of guanosine and isoguanosine-containing nucleodendrons results in the formation of decameric structures in absence of added salts. Further analysis of the mixture indicated that guanosine derivatives facilitate the formation, but are not involved in decameric structures; a process reminiscent of molecular crowding. This molecular system provides a powerful canvas for the rapid and modular assembly of polyfunctional dendritic macromolecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spray-drying represents a viable alternative to freeze-drying for preparing dry powder dispersions for delivering macromolecules to the lung. The dispersibility of spray-dried powders is limited however, and needs to be enhanced to improve lung deposition and subsequent biological activity. In this study, we investigate the utility of leucine as a dry powder dispersibility enhancer when added prior to spray-drying a model non-viral gene therapy formulation (lipid:polycation:pDNA, LPD). Freeze-dried lactose-LPD, spray-dried lactose-LPD and spray-dried leucine-lactose-LPD powders were prepared. Scanning electron microscopy showed that leucine, increased the surface roughness of spray-dried lactose particles. Particle size analysis revealed that leucine-containing spray-dried powders were unimodally dispersed with a mean particle diameter of 3.12 μm. Both gel electrophoresis and in vitro cell (A549) transfection showed that leucine may compromise the integrity and biological functionality of the gene therapy vector. The deposition of the leucine containing powder was however significantly enhanced as evidenced by an increase in gene expression mediated by dry powder collected at lower stages of a multistage liquid impinger (MSLI). Further studies are required to determine the potential of leucine as a ubiquitous dispersibility enhancer for a variety of pulmonary formulations. © 2003 Taylor & Francis Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The "living" and/or controlled cationic ring-opening bulk copolymerization of oxetane (Ox) with tetrahydropyran (THP) (cyclic ether with no homopolymerizability) at 35°C was examined using ethoxymethyl-1 -oxoniacyclohexane hexafluoroantimonate (EMOA) and (BF3 · CH3OH)THP as fast and slow initiator, respectively, yielding living and nonliving polymers with pseudoperiodic sequences (i.e., each pentamethylene oxide fragment inserted into the polymer is flanked by two trimethylene oxide fragments). Good control over number-average molecular weight (Mn up to 150000 g mol-1) with molecular weight distribution (MWD ∼ 1.4-1, 5) broader than predicted by the Poison distribution (MWDs > 1 +1/DPn) was attained using EMOA as initiating system, i.e., C 2H5OCH2Cl with 1.1 equiv of AgSbF6 as a stable catalyst and 1.1 equiv of 2,6-di-tert-butylpyridine used as a non-nucleophilic proton trap. With (BF3 · CH 3OH)THP, a drift of the linear dependence M n(GPC) vs Mn(theory) to lower molecular weight was observed together with the production of cyclic oligomers, ∼3-5% of the Ox consumed in THP against ∼30% in dichloromethane. Structural and kinetics studies highlighted a mechanism of chains growth where the rate of mutual conversion between "strain ACE species" (chain terminated by a tertiary 1-oxoniacyclobutane ion, Al) and "strain-free ACE species" (chain terminated by a tertiary 1-oxoniacyclohexane ion, Tl) depends on the rate at which Ox converts the stable species T1 (kind of "dormant" species) into a living "propagating" center A1 (i.e., k aapp[Ox]). The role of the THP solvent associated with the suspension of irreversible and reversible transfer reactions to polymer, when the polymerization is initiated with EMOA, was predicted by our kinetic considerations. The activation -deactivation pseudoequilibrium coefficient (Qt) was then calculated in a pure theoretical basis. From the measured apparent rate constant of Ox (kOxapp) and THP (kTHPapp = ka(endo)app) consumption, Qt and reactivity ratio (kp/kd, k a(endo)/ka(exo), and ks/ka(endo) were calculated, which then allow the determination of the transition rate constant of elementary step reactions that governs the increase of Mu with conversion. © 2009 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlling polymer thin-film morphology and crystallinity is crucial for a wide range of applications, particularly in thin-film organic electronic devices. In this work, the crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-coating is studied. PEO films were spun-cast from solvents possessing different polarities (chloroform, THF, and methanol) and probed via in situ grazing incidence wide-angle X-ray scattering. The crystallization behavior was found to follow the solvent polarity order (where chloroform < THF < methanol) rather than the solubility order (where THF > chloroform > methanol). When spun-cast from nonpolar chloroform, crystallization largely followed Avrami kinetics, resulting in the formation of morphologies comprising large spherulites. PEO solutions cast from more polar solvents (THF and methanol) do not form well-defined highly crystalline morphologies and are largely amorphous with the presence of small crystalline regions. The difference in morphological development of PEO spun-cast from polar solvents is attributed to clustering phenomena that inhibit polymer crystallization. This work highlights the importance of considering individual components of polymer solubility, rather than simple total solubility, when designing processing routes for the generation of morphologies with optimum crystallinities or morphologies.