27 resultados para local sequence alignment problem
Resumo:
We examined the effect of grouping by the alignment of implicit axes on the perception of multiple shapes, using a patient (GK) who shows simultanagnosia as part of Blint's syndrome. Five experiments demonstrated that: (1) GK was better able to judge the orientation of a global configuration if the constituent local shapes were aligned with their major axes than if they were aligned with their edges; (2) this axis information was used implicitly, since GK was unable to discriminate between configurations of axis-aligned and edge-aligned shapes; (3) GK's sensitivity to axis-alignment persisted even when the orientations of local shapes were kept constant, indicating some form of cooperative effect between the local elements; (4) axis-alignment of shapes also facilitated his ability to discriminate single-item from multi-item configurations; (5) the effect of axis-alignment could be attributed, at least partially, to the degree to which there was matching between the orientations of local shapes and the global configuration. Taken together, the results suggest that axis-based grouping can support the selection of multiple objects.
Resumo:
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.
Resumo:
Solving many scientific problems requires effective regression and/or classification models for large high-dimensional datasets. Experts from these problem domains (e.g. biologists, chemists, financial analysts) have insights into the domain which can be helpful in developing powerful models but they need a modelling framework that helps them to use these insights. Data visualisation is an effective technique for presenting data and requiring feedback from the experts. A single global regression model can rarely capture the full behavioural variability of a huge multi-dimensional dataset. Instead, local regression models, each focused on a separate area of input space, often work better since the behaviour of different areas may vary. Classical local models such as Mixture of Experts segment the input space automatically, which is not always effective and it also lacks involvement of the domain experts to guide a meaningful segmentation of the input space. In this paper we addresses this issue by allowing domain experts to interactively segment the input space using data visualisation. The segmentation output obtained is then further used to develop effective local regression models.
Resumo:
Purpose – The purpose of this paper is to consider hierarchical control as a mode of governance, and analyses the extent of control exhibited by central government over local government through the best value (BV) and comprehensive performance assessment (CPA) performance regimes. Design/methodology/approach – This paper utilises Ouchi's framework and, specifically, his articulation of bureaucratic or hierarchical control in the move towards achievement of organisational objectives. Hierarchical control may be inferred from the extent of “command and control” by Central Government, use of rewards and sanctions, and alignment to government priorities and discrimination of performance. Findings – CPA represents a more sophisticated performance regime than BV in the governance of local authorities by central government. In comparison to BV, CPA involved less scope for dialogue with local government prior to introduction, closer inspection of and direction of support toward poorer performing authorities, and more alignment to government priorities in the weightings attached to service blocks. Originality/value - The paper focuses upon the hierarchic/bureaucratic mode of governance as articulated by Ouchi and expands on this mode in order to analyse shifts in performance regimes in the public sector.
Resumo:
Purpose – The purpose of this paper is to explore the importance of host country networks and organisation of production in the context of international technology transfer that accompanies foreign direct investment (FDI). Design/methodology/approach – The empirical analysis is based on unbalanced panel data covering Japanese firms active in two-digit manufacturing sectors over a seven-year period. Given the self-selection problem affecting past sectoral-level studies, using firm-level panel data is a prerequisite to provide robust empirical evidence. Findings – While Japan is thought of as being a technologically advanced country, the results show that vertical productivity spillovers from FDI occur in Japan, but they are sensitive to technological differences between domestic firms and the idiosyncratic Japanese institutional network. FDI in vertically organised keiretsu sectors generates inter-industry spillovers through backward and forward linkages, while FDI within sectors linked to vertical keiretsu activities adversely affects domestic productivity. Overall, our results suggest that the role of vertical keiretsu is more prevalent than that of horizontal keiretsu. Originality/value – Japan’s industrial landscape has been dominated by institutional clusters or networks of inter-firm organisations through reciprocated, direct and indirect ties. However, interactions between inward investors and such institutionalised networks in the host economy are seldom explored. The role and characteristics of local business groups, in the form of keiretsu networks, have been investigated to determine the scale and scope of spillovers from inward FDI to Japanese establishments. This conceptualisation depends on the institutional mechanism and the market structure through which host economies absorb and exploit FDI.
Resumo:
This thesis describes the design and development of an eye alignment/tracking system which allows self alignment of the eye’s optical axis with a measurement axis. Eye alignment is an area of research largely over-looked, yet it is a fundamental requirement in the acquisition of clinical data from the eye. New trends in the ophthalmic market, desiring portable hand-held apparatus, and the application of ophthalmic measurements in areas other than vision care have brought eye alignment under new scrutiny. Ophthalmic measurements taken in hand-held devices with out an clinician present requires alignment in an entirely new set of circumstances, requiring a novel solution. In order to solve this problem, the research has drawn upon eye tracking technology to monitor the eye, and a principle of self alignment to perform alignment correction. A handheld device naturally lends itself to the patient performing alignment, thus a technique has been designed to communicate raw eye tracking data to the user in a manner which allows the user to make the necessary corrections. The proposed technique is a novel methodology in which misalignment to the eye’s optical axis can be quantified, corrected and evaluated. The technique uses Purkinje Image tracking to monitor the eye’s movement as well as the orientation of the optical axis. The use of two sets of Purkinje Images allows quantification of the eye’s physical parameters needed for accurate Purkinje Image tracking, negating the need for prior anatomical data. An instrument employing the methodology was subsequently prototyped and validated, allowing a sample group to achieve self alignment of their optical axis with an imaging axis within 16.5-40.8 s, and with a rotational precision of 0.03-0.043°(95% confidence intervals). By encompassing all these factors the technique facilitates self alignment from an unaligned position on the visual axis to an aligned position on the optical axis. The consequence of this is that ophthalmic measurements, specifically pachymetric measurements, can be made in the absence of an optician, allowing the use of ophthalmic instrumentation and measurements in health professions other than vision care.
Resumo:
Kernel methods provide a convenient way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semidefinite kernel. One problem with the most widely used kernels is that they neglect the locational information within the structures, resulting in less discrimination. Correspondence-based kernels, on the other hand, are in general more discriminating, at the cost of sacrificing positive-definiteness due to their inability to guarantee transitivity of the correspondences between multiple graphs. In this paper we generalize a recent structural kernel based on the Jensen-Shannon divergence between quantum walks over the structures by introducing a novel alignment step which rather than permuting the nodes of the structures, aligns the quantum states of their walks. This results in a novel kernel that maintains localization within the structures, but still guarantees positive definiteness. Experimental evaluation validates the effectiveness of the kernel for several structural classification tasks. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
Operation sequencing is one of the crucial tasks in process planning. However, it is an intractable process to identify an optimized operation sequence with minimal machining cost in a vast search space constrained by manufacturing conditions. Also, the information represented by current process plan models for three-axis machining is not sufficient for five-axis machining owing to the two extra degrees of freedom and the difficulty of set-up planning. In this paper, a representation of process plans for five-axis machining is proposed, and the complicated operation sequencing process is modelled as a combinatorial optimization problem. A modern evolutionary algorithm, i.e. the particle swarm optimization (PSO) algorithm, has been employed and modified to solve it effectively. Initial process plan solutions are formed and encoded into particles of the PSO algorithm. The particles 'fly' intelligently in the search space to achieve the best sequence according to the optimization strategies of the PSO algorithm. Meanwhile, to explore the search space comprehensively and to avoid being trapped into local optima, several new operators have been developed to improve the particle movements to form a modified PSO algorithm. A case study used to verify the performance of the modified PSO algorithm shows that the developed PSO can generate satisfactory results in optimizing the process planning problem. © IMechE 2009.
Resumo:
Local Government Authorities (LGAs) are mainly characterised as information-intensive organisations. To satisfy their information requirements, effective information sharing within and among LGAs is necessary. Nevertheless, the dilemma of Inter-Organisational Information Sharing (IOIS) has been regarded as an inevitable issue for the public sector. Despite a decade of active research and practice, the field lacks a comprehensive framework to examine the factors influencing Electronic Information Sharing (EIS) among LGAs. The research presented in this paper contributes towards resolving this problem by developing a conceptual framework of factors influencing EIS in Government-to-Government (G2G) collaboration. By presenting this model, we attempt to clarify that EIS in LGAs is affected by a combination of environmental, organisational, business process, and technological factors and that it should not be scrutinised merely from a technical perspective. To validate the conceptual rationale, multiple case study based research strategy was selected. From an analysis of the empirical data from two case organisations, this paper exemplifies the importance (i.e. prioritisation) of these factors in influencing EIS by utilising the Analytical Hierarchy Process (AHP) technique. The intent herein is to offer LGA decision-makers with a systematic decision-making process in realising the importance (i.e. from most important to least important) of EIS influential factors. This systematic process will also assist LGA decision-makers in better interpreting EIS and its underlying problems. The research reported herein should be of interest to both academics and practitioners who are involved in IOIS, in general, and collaborative e-Government, in particular. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Computational and communication complexities call for distributed, robust, and adaptive control. This paper proposes a promising way of bottom-up design of distributed control in which simple controllers are responsible for individual nodes. The overall behavior of the network can be achieved by interconnecting such controlled loops in cascade control for example and by enabling the individual nodes to share information about data with their neighbors without aiming at unattainable global solution. The problem is addressed by employing a fully probabilistic design, which can cope with inherent uncertainties, that can be implemented adaptively and which provide a systematic rich way to information sharing. This paper elaborates the overall solution, applies it to linear-Gaussian case, and provides simulation results.
Resumo:
This work is an initial study of a numerical method for identifying multiple leak zones in saturated unsteady flow. Using the conventional saturated groundwater flow equation, the leak identification problem is modelled as a Cauchy problem for the heat equation and the aim is to find the regions on the boundary of the solution domain where the solution vanishes, since leak zones correspond to null pressure values. This problem is ill-posed and to reconstruct the solution in a stable way, we therefore modify and employ an iterative regularizing method proposed in [1] and [2]. In this method, mixed well-posed problems obtained by changing the boundary conditions are solved for the heat operator as well as for its adjoint, to get a sequence of approximations to the original Cauchy problem. The mixed problems are solved using a Finite element method (FEM), and the numerical results indicate that the leak zones can be identified with the proposed method.
Resumo:
A numerical method for the Dirichlet initial boundary value problem for the heat equation in the exterior and unbounded region of a smooth closed simply connected 3-dimensional domain is proposed and investigated. This method is based on a combination of a Laguerre transformation with respect to the time variable and an integral equation approach in the spatial variables. Using the Laguerre transformation in time reduces the parabolic problem to a sequence of stationary elliptic problems which are solved by a boundary layer approach giving a sequence of boundary integral equations of the first kind to solve. Under the assumption that the boundary surface of the solution domain has a one-to-one mapping onto the unit sphere, these integral equations are transformed and rewritten over this sphere. The numerical discretisation and solution are obtained by a discrete projection method involving spherical harmonic functions. Numerical results are included.