16 resultados para learning tasks
Filtro por publicador
- Academic Archive On-line (Karlstad University; Sweden) (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Aston University Research Archive (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (34)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Brock University, Canada (9)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (23)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (33)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (4)
- Dalarna University College Electronic Archive (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (4)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (15)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- Galway Mayo Institute of Technology, Ireland (2)
- Georgian Library Association, Georgia (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (9)
- Instituto Politécnico do Porto, Portugal (201)
- Martin Luther Universitat Halle Wittenberg, Germany (18)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Open University Netherlands (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório Aberto da Universidade Aberta de Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (46)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (9)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (60)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Scielo Saúde Pública - SP (11)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (12)
- Universidad de Alicante (6)
- Universidad Politécnica de Madrid (9)
- Universidade de Madeira (1)
- Universidade do Minho (40)
- Universidade dos Açores - Portugal (14)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (45)
- Université de Montréal, Canada (7)
- University of Queensland eSpace - Australia (172)
- University of Washington (4)
- WestminsterResearch - UK (1)
Resumo:
Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition. © 2011 Springer-Verlag.