17 resultados para integrated assessment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Undergraduate programmes on construction management and other closely related built environment disciplines are currently taught and assessed on a modular basis. This is the case in the UK and in many other countries globally. However, it can be argued that professionally oriented programmes like these are better assessed on a non-modular basis, in order to produce graduates who can apply knowledge on different subject contents in cohesion to solve complex practical scenarios in their work environments. The examples of medical programmes where students are assessed on a non-modular basis can be cited as areas where this is already being done. A preliminary study was undertaken to explore the applicability of non-modular assessment within construction management undergraduate education. A selected sample of university academics was interviewed to gather their perspectives on applicability of non-modular assessment. General acceptance was observed among the academics involved that integrating non-modular assessment is applicable and will be beneficial. All academics stated that at least some form of non-modular assessment as being currently used in their programmes. Examples where cross-modular knowledge is assessed included comprehensive/multi-disciplinary project modules and creating larger modules to amalgamate a number of related subject areas. As opposed to a complete shift from modular to non-modular, an approach where non-modular assessment is integrated and its use further expanded within the current system is therefore suggested. This is due to the potential benefits associated with this form of assessment to professionally aligned built environment programmes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient numerical models facilitate the study and design of solid oxide fuel cells (SOFCs), stacks, and systems. Whilst the accuracy and reliability of the computed results are usually sought by researchers, the corresponding modelling complexities could result in practical difficulties regarding the implementation flexibility and computational costs. The main objective of this article is to adapt a simple but viable numerical tool for evaluation of our experimental rig. Accordingly, a model for a multi-layer SOFC surrounded by a constant temperature furnace is presented, trained and validated against experimental data. The model consists of a four-layer structure including stand, two interconnects, and PEN (Positive electrode-Electrolyte-Negative electrode); each being approximated by a lumped parameter model. The heating process through the surrounding chamber is also considered. We used a set of V-I characteristics data for parameter adjustment followed by model verification against two independent sets of data. The model results show a good agreement with practical data, offering a significant improvement compared to reduced models in which the impact of external heat loss is neglected. Furthermore, thermal analysis for adiabatic and non-adiabatic process is carried out to capture the thermal behaviour of a single cell followed by a polarisation loss assessment. Finally, model-based design of experiment is demonstrated for a case study.