23 resultados para insulin, therapeutic use
Resumo:
Cannabidiol (CBD), a once-considered inert cannabis constituent, is one of two primary constituents of cannabis, alongside delta-9-tetrahydrocannabinol (?9-THC/THC). In the last 30 years, CBD has become implicated with a range of pharmaceutical mechanisms of great therapeutic interest and utility. This review details the literature speculating CBD’s attenuation of psychotic symptoms, particularly in light of a marked elevation in mean THC concentrations, and a concomitant decline in CBD concentrations in the prevalent U.K street market cannabis derivatives since c. 2000. CBD is purported to exhibit pharmacology akin to established atypical antipsychotics, whilst THC has been implicated with the precipitation of psychosis, and the induction of associated symptoms. The aim of the review was to clarify the conjecture surrounding CBD’s antipsychotic efficacy, before going on to detail prominent theories about its associated pharmacodynamics. Were CBD’s antipsychotic efficacy established, then there is potential for major latent anthropological repercussions to manifest, such as significant elevations in psychosis manifestations in the U.K. The review found a largely affirmative body of evidence asserting CBD’s antipsychotic efficacy. CBD exhibited capacity to attenuate natural and artificially induced psychoses in both animal and human cohorts, the latter of which included individuals considered resistant to conventional treatment. CBD also shows promising potential for use as an antipsychotic drug for Parkinson’s disease (PD) patients with psychosis, owing to its low rate of extra-pyramidal side-effect induction. A range of potential pharmacological mechanisms behind CBD’s neuroleptic pharmacology are outlined, with particular emphasis on its prevention of the hydrolysis and reuptake of the endogenous cannabinoid, anandamide. However, given the nebular aetiological basis for psychoses, explicit conclusions on how CBD attenuates psychotic symptoms remains to be determined.
Resumo:
Heme oxygenase (Hmox) is an endogenous system that offers protection against placental cytotoxic damage associated with preeclampsia. The Hmox1/carbon monoxide (CO) pathway inhibits soluble Flt-1 (sFlt-1) and soluble Endoglin (sEng). More importantly, statins induce Hmox1 and suppress the release of sFlt-1 and sEng; thus, statins and Hmox1 activators are potential novel therapeutic agents for treating preeclampsia. The contribution of the Hmox system to the pathogenesis of preeclampsia has been further indicated by the incidence of preeclampsia being reduced by a third in smokers, who had reduced levels of circulating sFlt-1. Interestingly, preeclamptic women exhale less CO compared with women with healthy pregnancies. Hmox1 is reduced prior to the increase in sFlt-1 as Hmox1 mRNA expression in the trophoblast is decreased in the first trimester in women who go on to develop preeclampsia. Induction of Hmox1 or exposure to CO or bilirubin has been shown to inhibit the release of sFlt-1 and sEng in animal models of preeclampsia. The functional benefit of statins and Hmox1 induction in women with preeclampsia is valid not only because they inhibit sFlt-1 release, but also because statins and Hmox1 are associated with anti-apoptotic, anti-inflammatory, and anti-oxidant properties. The StAmP trial is the first randomized control trial (RCT) evaluating the use of pravastatin to ameliorate severe preeclampsia. This proof-of-concept study will pave the way for future global RCT, the success of which will greatly contribute to achieving the United Nations Millennium Development Goals (MDG4 and MDG5) and offering an affordable and easily accessible therapy for preeclampsia. © 2014 The Authors.
Resumo:
Tissue transglutaminase (TG2) has been suggested to be a key player in the progression and metastasis of chemoresistant breast cancer. One of the foremost survival signalling pathways implicated in causing drug resistance in breast cancer is the constitutive activation of NFκB (Nuclear Factor -kappa B) induced by TG2. This study provides a mechanism by which TG2 constitutively activates NFκB which in turn confers chemoresistance to breast cancer cells against doxorubicin. Breast cancer cell lines with varying expression levels of TG2 as well as TG2 null breast cancer cells transfected with TG2 were used as the major cell models for this study. This study made use of cell permeable and impermeable TG2 inhibitors, specific TG2 and Rel A/ p65 targeting siRNA, TG2 functional blocking antibodies, IKK inhibitors and a specific targeting peptide against Rel A/p65 to investigate the pathway of activation involved in the constitutive activation of NFκB by TG2 leading to drug resistance. Crucial to the activation of Rel A/p65 and drug resistance in the breast cancer cells is the interaction between the complex of IκBα and Rel A/p65 with TG2 which results in the dimerization of Rel A/p65 and polymerization of IκBα. The association of TG2 with the IκBα-NFκB complex was determined to be independent of IKKα/β function. The polymerized IκBα is degraded in the cytoplasm by the μ-calpain pathway which allows the cross linked Rel A/ p65 dimers to translocate into the nucleus. Using R283 and ZDON (cell permeable TG2 activity inhibitors) and specific TG2 targeting siRNA, the Rel A/ p65 dimer formation could be inhibited. Co-immunoprecipitation studies confirmed that the phosphorylation of the Rel A/p65 dimers at the Ser536 residue by IKKε took place in the cell nucleus. Importantly, this study also investigated the transcriptional regulation of the TGM2 gene by the pSer536 Rel A/ p65 dimer and the importance of this TG2-NFκB feedback loop in conferring drug resistance to breast cancer cells. This data provides evidence that TG2 could be a key therapeutic target in the treatment of chemoresistant breast cancer.
Resumo:
Background and Purpose The glucagon-like peptide 1 (GLP-1) receptor performs an important role in glycaemic control, stimulating the release of insulin. It is an attractive target for treating type 2 diabetes. Recently, several reports of adverse side effects following prolonged use of GLP-1 receptor therapies have emerged: most likely due to an incomplete understanding of signalling complexities. Experimental Approach We describe the expression of the GLP-1 receptor in a panel of modified yeast strains that couple receptor activation to cell growth via single Gα/yeast chimeras. This assay enables the study of individual ligand-receptor G protein coupling preferences and the quantification of the effect of GLP-1 receptor ligands on G protein selectivity. Key Results The GLP-1 receptor functionally coupled to the chimeras representing the human Gαs, Gαi and Gαq subunits. Calculation of the dissociation constant for a receptor antagonist, exendin-3 revealed no significant difference between the two systems. We obtained previously unobserved differences in G protein signalling bias for clinically relevant therapeutic agents, liraglutide and exenatide; the latter displaying significant bias for the Gαi pathway. We extended the use of the system to investigate small-molecule allosteric compounds and the closely related glucagon receptor. Conclusions and Implications These results provide a better understanding of the molecular events involved in GLP-1 receptor pleiotropic signalling and establish the yeast platform as a robust tool to screen for more selective, efficacious compounds acting at this important class of receptors in the future. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Resumo:
Inhaled insulin is a recent advance in insulin delivery that promises to be an effective alternative to subcutaneous insulin. Several insulin delivery systems are currently in development and the first of these has been approved for clinical use. Inhaled insulin offers greater flexibility and convenience for patients with diabetes and may be particularly useful in those who are reluctant to initiate or intensify insulin treatment. Although promising, potential concerns remain regarding its long-term effects on lungs. Also, excluding certain groups of patients such as smokers and those with respiratory illnesses will restrict its use at present. Lack of familiarity with the technology, especially relating to dose adjustments and inhaler device, is also likely to present fresh challenges. But, careful selection of patients, education, and continued support from health professionals is vital to ensure success with this new technology.
Resumo:
Insulin resistance is a major endocrinopathy underlying the development of hyperglycaemia and cardiovascular disease in type 2 diabetes. Metformin (a biguanide) and rosiglitazone (a thiazolidinedione) counter insulin resistance, acting by different cellular mechanisms. The two agents can be used in combination to achieve additive glucose-lowering efficacy in the treatment of type 2 diabetes, without stimulating insulin secretion and without causing hypoglycaemia. Both agents also reduce a range of atherothrombotic factors and markers, indicating a lower cardiovascular risk. Early intervention with metformin is already known to reduce myocardial infarction and increase survival in overweight type 2 patients. Recently, a single-tablet combination of metformin and rosiglitazone, Avandamet, has become available. Avandamet is suitable for type 2-diabetic patients who are inadequately controlled by monotherapy with metformin or rosiglitazone. Patients already receiving separate tablets of metformin and rosiglitazone may switch to the single-tablet combination for convenience. Also, early introduction of the combination before maximal titration of one agent can reduce side effects. Use of Avandamet requires attention to the precautions for both metformin and rosiglitazone, especially renal, cardiac and hepatic competence. In summary, Avandamet is a single-tablet metformin-rosiglitazone combination that doubly targets insulin resistance as therapy for hyperglycaemia and vascular risk in type 2 diabetes. © 2004 Blackwell Publishing Ltd.
Resumo:
Given the continued interest in defining the optimal management of individuals with type 2 diabetes, the Editor of Diabetes Care convened a working party of diabetes specialists to examine this topic in the context of insulin therapy. This was prompted by recent new evidence on the use of insulin in such people. The group was aware of evidence that the benefits of insulin therapy are still usually offered late, and thus the aim of the discussion was how to define the optimal timing and basis for decisions regarding insulin and to apply these concepts in practice. It was noted that recent evidence had built upon that of the previous decades, together confirming the benefits and safety of insulin therapy, albeit with concerns about the potential for hypoglycemia and gain in body weight. Insulin offers a unique ability to control hyperglycemia, being used from the time of diagnosis in some circumstances, when metabolic control is disturbed by medical illness, procedures, or therapy, as well as in the longer term in ambulatory care. For those previously starting insulin, various other forms of therapy can be added later, which offer complementary effects appropriate to individual needs. Here we review current evidence and circumstances in which insulin can be used, consider individualized choices of alternatives and combination regimens, and offer some guidance on personalized targets and tactics for glycemic control in type 2 diabetes. © 2014 by the American Diabetes Association.
Resumo:
Background and aims: Glucagon-like peptide-1 (GLP-1) receptor agonists improve islet function and delay gastric emptying in subjects with type 2 diabetes mellitus. We evaluated 2-hour glucose, glucagon and insulin changes following a standardized mixed-meal tolerance test before and after 24 weeks of treatment with the once-daily prandial GLP-1 receptor agonist lixisenatide (approved for a therapeutic dose of 20 μg once daily) in six randomized, placebo-controlled studies within the lixisenatide Phase III GetGoal programme. In the studies, the mixed-meal test was conducted before and after: (1) lixisenatide treatment in patients insufficiently controlled despite diet and exercise (GetGoal-Mono), (2) lixisenatide treatment in combination with oral antidiabetic drugs (OADs) (GetGoal-M and GetGoal-S), or (3) lixisenatide treatment in combination with basal insulin ± OAD (GetGoal-Duo 1, GetGoal-L and GetGoal-L-Asia).Materials and methods: A meta-analysis was performed (lixisenatide n=1124 vs placebo n=707) combining ANCOVA least squares (LS) mean values using an inverse variance weighted analysis. Results: Lixisenatide significantly reduced 2-hour postprandial glucose from baseline (LS mean difference vs placebo: -4.9 mmol/L, p<0.0001, Figure) and glucose excursions (LS mean difference vs placebo: -4.5 mmol/L, p<0.0001). As measured in two studies, lixisenatide also reduced postprandial glucagon (LS mean difference vs placebo: -19.0 ng/L, p<0.0001) and insulin (LS mean difference vs placebo: -64.8 pmol/L, p<0.0001), although the glucagon/insulin ratio was increased (LS mean difference vs placebo: 0.15, p=0.02) compared with placebo. Conclusion: The results show that lixisenatide potently reduces the glucose excursion after meal ingestion in subjects with type 2 diabetes, in association with marked reductions in glucagon and insulin levels. It is suggested that diminished glucagon secretion and slower gastric emptying contribute to reduced hepatic glucose production and delayed glucose absorption, enabling postprandial glycaemia to be controlled with less demand on beta-cell insulin secretion. Clinical Trial Registration Number: NCT00688701; NCT00712673; NCT00713830; NCT00975286; NCT00715624; NCT00866658 Supported by: Sanofi