49 resultados para information processing model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As one of the most popular deep learning models, convolution neural network (CNN) has achieved huge success in image information extraction. Traditionally CNN is trained by supervised learning method with labeled data and used as a classifier by adding a classification layer in the end. Its capability of extracting image features is largely limited due to the difficulty of setting up a large training dataset. In this paper, we propose a new unsupervised learning CNN model, which uses a so-called convolutional sparse auto-encoder (CSAE) algorithm pre-Train the CNN. Instead of using labeled natural images for CNN training, the CSAE algorithm can be used to train the CNN with unlabeled artificial images, which enables easy expansion of training data and unsupervised learning. The CSAE algorithm is especially designed for extracting complex features from specific objects such as Chinese characters. After the features of articficial images are extracted by the CSAE algorithm, the learned parameters are used to initialize the first CNN convolutional layer, and then the CNN model is fine-Trained by scene image patches with a linear classifier. The new CNN model is applied to Chinese scene text detection and is evaluated with a multilingual image dataset, which labels Chinese, English and numerals texts separately. More than 10% detection precision gain is observed over two CNN models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is currently considerable interest in developing general non-linear density models based on latent, or hidden, variables. Such models have the ability to discover the presence of a relatively small number of underlying `causes' which, acting in combination, give rise to the apparent complexity of the observed data set. Unfortunately, to train such models generally requires large computational effort. In this paper we introduce a novel latent variable algorithm which retains the general non-linear capabilities of previous models but which uses a training procedure based on the EM algorithm. We demonstrate the performance of the model on a toy problem and on data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the effect of two types of noise, data noise and model noise, in an on-line gradient-descent learning scenario for general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labeled by a two-layer teacher network with an arbitrary number of hidden units. Data is then corrupted by Gaussian noise affecting either the output or the model itself. We examine the effect of both types of noise on the evolution of order parameters and the generalization error in various phases of the learning process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neural networks are usually curved statistical models. They do not have finite dimensional sufficient statistics, so on-line learning on the model itself inevitably loses information. In this paper we propose a new scheme for training curved models, inspired by the ideas of ancillary statistics and adaptive critics. At each point estimate an auxiliary flat model (exponential family) is built to locally accommodate both the usual statistic (tangent to the model) and an ancillary statistic (normal to the model). The auxiliary model plays a role in determining credit assignment analogous to that played by an adaptive critic in solving temporal problems. The method is illustrated with the Cauchy model and the algorithm is proved to be asymptotically efficient.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The learning properties of a universal approximator, a normalized committee machine with adjustable biases, are studied for on-line back-propagation learning. Within a statistical mechanics framework, numerical studies show that this model has features which do not exist in previously studied two-layer network models without adjustable biases, e.g., attractive suboptimal symmetric phases even for realizable cases and noiseless data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gaussian processes provide natural non-parametric prior distributions over regression functions. In this paper we consider regression problems where there is noise on the output, and the variance of the noise depends on the inputs. If we assume that the noise is a smooth function of the inputs, then it is natural to model the noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free output value. We show that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods. Our results on a synthetic data set give a posterior noise variance that well-approximates the true variance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In most treatments of the regression problem it is assumed that the distribution of target data can be described by a deterministic function of the inputs, together with additive Gaussian noise having constant variance. The use of maximum likelihood to train such models then corresponds to the minimization of a sum-of-squares error function. In many applications a more realistic model would allow the noise variance itself to depend on the input variables. However, the use of maximum likelihood to train such models would give highly biased results. In this paper we show how a Bayesian treatment can allow for an input-dependent variance while overcoming the bias of maximum likelihood.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We develop an approach for a sparse representation for Gaussian Process (GP) models in order to overcome the limitations of GPs caused by large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the model. Experimental results on toy examples and large real-world datasets indicate the efficiency of the approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We analyse Gallager codes by employing a simple mean-field approximation that distorts the model geometry and preserves important interactions between sites. The method naturally recovers the probability propagation decoding algorithm as a minimization of a proper free-energy. We find a thermodynamical phase transition that coincides with information theoretical upper-bounds and explain the practical code performance in terms of the free-energy landscape.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Thouless-Anderson-Palmer (TAP) approach was originally developed for analysing the Sherrington-Kirkpatrick model in the study of spin glass models and has been employed since then mainly in the context of extensively connected systems whereby each dynamical variable interacts weakly with the others. Recently, we extended this method for handling general intensively connected systems where each variable has only O(1) connections characterised by strong couplings. However, the new formulation looks quite different with respect to existing analyses and it is only natural to question whether it actually reproduces known results for systems of extensive connectivity. In this chapter, we apply our formulation of the TAP approach to an extensively connected system, the Hopfield associative memory model, showing that it produces identical results to those obtained by the conventional formulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This multi-modal investigation aimed to refine analytic tools including proton magnetic resonance spectroscopy (1H-MRS) and fatty acid gas chromatography-mass spectrometry (GC-MS) analysis, for use with adult and paediatric populations, to investigate potential biochemical underpinnings of cognition (Chapter 1). Essential fatty acids (EFAs) are vital for the normal development and function of neural cells. There is increasing evidence of behavioural impairments arising from dietary deprivation of EFAs and their long-chain fatty acid metabolites (Chapter 2). Paediatric liver disease was used as a deficiency model to examine the relationships between EFA status and cognitive outcomes. Age-appropriate Wechsler assessments measured Full-scale IQ (FSIQ) and Information Processing Speed (IPS) in clinical and healthy cohorts; GC-MS quantified surrogate markers of EFA status in erythrocyte membranes; and 1H-MRS quantified neurometabolite markers of neuronal viability and function in cortical tissue (Chapter 3). Post-transplant children with early-onset liver disease demonstrated specific deficits in IPS compared to age-matched acute liver failure transplant patients and sibling controls, suggesting that the time-course of the illness is a key factor (Chapter 4). No signs of EFA deficiency were observed in the clinical cohort, suggesting that EFA metabolism was not significantly impacted by liver disease. A strong, negative correlation was observed between omega-6 fatty acids and FSIQ, independent of disease diagnosis (Chapter 5). In a study of healthy adults, effect sizes for the relationship between 1H-MRS- detectable neurometabolites and cognition fell within the range of previous work, but were not statistically significant. Based on these findings, recommendations are made emphasising the need for hypothesis-driven enquiry and greater subtlety of data analysis (Chapter 6). Consistency of metabolite values between paediatric clinical cohorts and controls indicate normal neurodevelopment, but the lack of normative, age-matched data makes it difficult to assess the true strength of liver disease-associated metabolite changes (Chapter 7). Converging methods offer a challenging but promising and novel approach to exploring brain-behaviour relationships from micro- to macroscopic levels of analysis (Chapter 8).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research on diversity in teams and organizations has revealed ambiguous results regarding the effects of group composition on workgroup performance. The categorization—elaboration model (van Knippenberg et al., 2004) accounts for this variety and proposes two different underlying processes. On the one hand diversity may bring about intergroup bias which leads to less group identification, which in turn is followed by more conflict and decreased workgroup performance. On the other hand, the information processing approach proposes positive effects of diversity because of a more elaborate processing of information brought about by a wider pool and variety of perspectives in more diverse groups. We propose that the former process is contingent on individual team members' beliefs that diversity is good or bad for achieving the team's aims. We predict that the relationship between subjective diversity and identification is more positive in ethnically diverse project teams when group members hold beliefs that are pro-diversity. Results of two longitudinal studies involving postgraduate students working in project teams confirm this hypothesis. Analyses further reveal that group identification is positively related to students' desire to stay in their groups and to their information elaboration. Finally, we found evidence for the expected moderated mediation model with indirect effects of subjective diversity on elaboration and the desire to stay, mediated through group identification, moderated by diversity beliefs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 2002, we published a paper [Brock, J., Brown, C., Boucher, J., Rippon, G., 2002. The temporal binding deficit hypothesis of autism. Development and Psychopathology 142, 209-224] highlighting the parallels between the psychological model of 'central coherence' in information processing [Frith, U., 1989. Autism: Explaining the Enigma. Blackwell, Oxford] and the neuroscience model of neural integration or 'temporal binding'. We proposed that autism is associated with abnormalities of information integration that is caused by a reduction in the connectivity between specialised local neural networks in the brain and possible overconnectivity within the isolated individual neural assemblies. The current paper updates this model, providing a summary of theoretical and empirical advances in research implicating disordered connectivity in autism. This is in the context of changes in the approach to the core psychological deficits in autism, of greater emphasis on 'interactive specialisation' and the resultant stress on early and/or low-level deficits and their cascading effects on the developing brain [Johnson, M.H., Halit, H., Grice, S.J., Karmiloff-Smith, A., 2002. Neuroimaging of typical and atypical development: a perspective from multiple levels of analysis. Development and Psychopathology 14, 521-536].We also highlight recent developments in the measurement and modelling of connectivity, particularly in the emerging ability to track the temporal dynamics of the brain using electroencephalography (EEG) and magnetoencephalography (MEG) and to investigate the signal characteristics of this activity. This advance could be particularly pertinent in testing an emerging model of effective connectivity based on the balance between excitatory and inhibitory cortical activity [Rubenstein, J.L., Merzenich M.M., 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior 2, 255-267; Brown, C., Gruber, T., Rippon, G., Brock, J., Boucher, J., 2005. Gamma abnormalities during perception of illusory figures in autism. Cortex 41, 364-376]. Finally, we note that the consequence of this convergence of research developments not only enables a greater understanding of autism but also has implications for prevention and remediation. © 2006.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a novel all-optical signal processor for use at a return-to-zero receiver utilising loop mirror intensity filtering and nonlinear pulse broadening in normal dispersion fibre. The device offers reamplification and cleaning up of the optical signals, and phase margin improvement. The efficiency of the technique is demonstrated by application to 40 Gbit/s data transmission.