23 resultados para human factors
Resumo:
The present scarcity of operational knowledge-based systems (KBS) has been attributed, in part, to an inadequate consideration shown to user interface design during development. From a human factors perspective the problem has stemmed from an overall lack of user-centred design principles. Consequently the integration of human factors principles and techniques is seen as a necessary and important precursor to ensuring the implementation of KBS which are useful to, and usable by, the end-users for whom they are intended. Focussing upon KBS work taking place within commercial and industrial environments, this research set out to assess both the extent to which human factors support was presently being utilised within development, and the future path for human factors integration. The assessment consisted of interviews conducted with a number of commercial and industrial organisations involved in KBS development; and a set of three detailed case studies of individual KBS projects. Two of the studies were carried out within a collaborative Alvey project, involving the Interdisciplinary Higher Degrees Scheme (IHD) at the University of Aston in Birmingham, BIS Applied Systems Ltd (BIS), and the British Steel Corporation. This project, which had provided the initial basis and funding for the research, was concerned with the application of KBS to the design of commercial data processing (DP) systems. The third study stemmed from involvement on a KBS project being carried out by the Technology Division of the Trustees Saving Bank Group plc. The preliminary research highlighted poor human factors integration. In particular, there was a lack of early consideration of end-user requirements definition and user-centred evaluation. Instead concentration was given to the construction of the knowledge base and prototype evaluation with the expert(s). In response to this identified problem, a set of methods was developed that was aimed at encouraging developers to consider user interface requirements early on in a project. These methods were then applied in the two further projects, and their uptake within the overall development process was monitored. Experience from the two studies demonstrated that early consideration of user interface requirements was both feasible, and instructive for guiding future development work. In particular, it was shown a user interface prototype could be used as a basis for capturing requirements at the functional (task) level, and at the interface dialogue level. Extrapolating from this experience, a KBS life-cycle model is proposed which incorporates user interface design (and within that, user evaluation) as a largely parallel, rather than subsequent, activity to knowledge base construction. Further to this, there is a discussion of several key elements which can be seen as inhibiting the integration of human factors within KBS development. These elements stem from characteristics of present KBS development practice; from constraints within the commercial and industrial development environments; and from the state of existing human factors support.
Resumo:
Computer based discrete event simulation (DES) is one of the most commonly used aids for the design of automotive manufacturing systems. However, DES tools represent machines in extensive detail, while only representing workers as simple resources. This presents a problem when modelling systems with a highly manual work content, such as an assembly line. This paper describes research at Cranfield University, in collaboration with the Ford Motor Company, founded on the assumption that human variation is the cause of a large percentage of the disparity between simulation predictions and real world performance. The research aims to improve the accuracy and reliability of simulation prediction by including models of human factors.
Resumo:
Efforts to address the problems of literacy are often focused on developing countries. However, functional illiteracy is a challenge encountered by up to 50% of adults in developed countries. In this paper we reflect on the challenges we faced in trying to design and study the use of a mobile application to support adult literacy with two user groups: adults enrolled in literacy classes and carpenters without a high school education enrolled in an essential skills program. We also elaborate on aspects of the evaluations that are specific to a marginalized, functionally illiterate, group in a developed country - aspects that are less frequently present in similar studies of mobile literacy support technologies in developing countries. We conclude with presenting the lessons learnt from our evaluations and the impact of the studies' specific challenges on the outcome and uptake of such mobile assistive technologies in providing practical support to low-literacy adults in conjunction with literacy and essential skills training.
Resumo:
Mobile and wearable computers present input/output prob-lems due to limited screen space and interaction techniques. When mobile, users typically focus their visual attention on navigating their environment - making visually demanding interface designs hard to operate. This paper presents two multimodal interaction techniques designed to overcome these problems and allow truly mobile, 'eyes-free' device use. The first is a 3D audio radial pie menu that uses head gestures for selecting items. An evaluation of a range of different audio designs showed that egocentric sounds re-duced task completion time, perceived annoyance, and al-lowed users to walk closer to their preferred walking speed. The second is a sonically enhanced 2D gesture recognition system for use on a belt-mounted PDA. An evaluation of the system with and without audio feedback showed users' ges-tures were more accurate when dynamically guided by au-dio-feedback. These novel interaction techniques demon-strate effective alternatives to visual-centric interface de-signs on mobile devices.
Resumo:
This research was concerned with identifying factors which may influence human reliability within chemical process plants - these factors are referred to as Performance Shaping Factors (PSFs). Following a period of familiarization within the industry, a number of case studies were undertaken covering a range of basic influencing factors. Plant records and site `lost time incident reports' were also used as supporting evidence for identifying and classifying PSFs. In parallel to the investigative research, the available literature appertaining to human reliability assessment and PSFs was considered in relation to the chemical process plan environment. As a direct result of this work, a PSF classification structure has been produced with an accompanying detailed listing. Phase two of the research considered the identification of important individual PSFs for specific situations. Based on the experience and data gained during phase one, it emerged that certain generic features of a task influenced PSF relevance. This led to the establishment of a finite set of generic task groups and response types. Similarly, certain PSFs influence some human errors more than others. The result was a set of error type key words, plus the identification and classification of error causes with their underlying error mechanisms. By linking all these aspects together, a comprehensive methodology has been forwarded as the basis of a computerized aid for system designers. To recapitulate, the major results of this research have been: One, the development of a comprehensive PSF listing specifically for the chemical process industries with a classification structure that facilitates future updates; and two, a model of identifying relevant SPFs and their order of priority. Future requirements are the evaluation of the PSF listing and the identification method. The latter must be considered both in terms of `useability' and its success as a design enhancer, in terms of an observable reduction in important human errors.
Resumo:
By addressing the vascular features that characterise myopia, this thesis aims to provide an understanding of the early structural changes associated with human myopia and the progression to co-morbidity with age. This thesis addresses three main areas of study: 1. Ocular perfusion features and autoregulatory mechanisms in human myopia; 2. Choroidal thickness at the macular area of myopic eyes; 3. Effect of chronic smoking on the ocular haemodynamics and autoregulation. This thesis demonstrated a reduced resting ocular pulse amplitude and retrobulbar blood flow in human myopia, associated with an apparent oversensitivity to the vasodilatory effects of hypercapnia, which may be due to anatomical differences in the volume of the vessel beds. In young smokers, normal resting state vascular characteristics were present; however there also appeared to be increased reactivity to hypercapnia, possibly due to relative chronic hypoxia. The systemic circulation in myopes and smokers over-reacted similarly to hypercapnia suggesting that physiologic differences are not confined to the eye. Age also showed a negative effect on autoregulatory capacity in otherwise normal eyes. Collectively, these findings suggest that myopes and smokers require greater autoregulatory capacity to maintain appropriate oxygenation of retinal tissue, and since the capacity for such regulation reduces with age, these groups are at greater risk of insufficient autoregulation and relative hypoxia with age.