21 resultados para hexapole permanent magnet
Resumo:
This paper considers the role of HR in ethics and social responsibility and questions why, despite an acceptance of a role in ethical stewardship, the HR profession appears to be reluctant to embrace its responsibilities in this area. The study explores how HR professionals see their role in relation to ethical stewardship of the organisation, and the factors that inhibit its execution. A survey of 113 UK-based HR professionals, working in both domestic and multinational corporations, was conducted to explore their perceptions of the role of HR in maintaining ethical and socially responsible action in their organisations, and to identify features of the organisational environment which might help or hinder this role being effectively carried out. The findings indicate that although there is a clear understanding of the expectations of ethical stewardship, HR professionals often face difficulties in fulfilling this role because of competing tensions and perceptions of their role within their organisations. A way forward is proposed, which draws on the positive individual factors highlighted in this research to explore how approaches to organisational development (through positive deviance) may reduce these tensions to enable the better fulfilment of ethical responsibilities within organisations. The involvement and active modelling of ethical behaviour by senior management, coupled with an open approach to surfacing organisational values and building HR procedures, which support socially responsible action, are crucial to achieving socially responsible organisations. Finally, this paper challenges the HR profession, through professional and academic institutions internationally, to embrace their role in achieving this. © 2013 Taylor & Francis.
Resumo:
Communications engineers are learning to create an electromagnet wave at will, to transmit information. This wave, the optical soliton, is the subject of astounding recent developments in nonlinear optics and lasers. The author describes the principles behind the use of solitons in optical communications and shows that in the context of such communications the most important property of solitons is that they are extremely stable. Not only do they not disperse, but an encounter with a perturbation (e.g. a joint in optical fibre) will usually leave the soliton unaltered.
Resumo:
We present an experimental and numerical study of transversely loaded uniform fibre-Bragg gratings. A novel loading configuration is described, producing pressure-induced spectral holes in an initially strong uniform grating. The birefringence properties of these gratings are analysed. It is shown that the frequency splitting of the two spectral holes, corresponding to two orthogonal polarisation states, can be adjusted precisely using this loading configuration. We finally demonstrate a new and simple scheme to induce multiple spectral holes in the stop-band. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Permanent deformation and fracture may develop simultaneously when an asphalt mixture is subjected to a compressive load. The objective of this research is to separate viscoplasticity and viscofracture from viscoelasticity so that the permanent deformation and fracture of the asphalt mixtures can be individually and accurately characterized without the influence of viscoelasticity. The undamaged properties of 16 asphalt mixtures that have two binder types, two air void contents, and two aging conditions are first obtained by conducting nondestructive creep tests and nondestructive dynamic modulus tests. Testing results are analyzed by using the linear viscoelastic theory in which the creep compliance and the relaxation modulus are modeled by the Prony model. The dynamic modulus and phase angle of the undamaged asphalt mixtures remained constant with the load cycles. The undamaged asphalt mixtures are then used to perform the destructive dynamic modulus tests in which the dynamic modulus and phase angle of the damaged asphalt mixtures vary with load cycles. This indicates plastic evolution and crack propagation. The growth of cracks is signaled principally by the increase of the phase angle, which occurs only in the tertiary stage. The measured total strain is successfully decomposed into elastic strain, viscoelastic strain, plastic strain, viscoplastic strain, and viscofracture strain by employing the pseudostrain concept and the extended elastic-viscoelastic correspondence principle. The separated viscoplastic strain uses a predictive model to characterize the permanent deformation. The separated viscofracture strain uses a fracture strain model to characterize the fracture of the asphalt mixtures in which the flow number is determined and a crack speed index is proposed. Comparisons of the 16 samples show that aged asphalt mixtures with a low air void content have a better performance, resisting permanent deformation and fracture. © 2012 American Society of Civil Engineers.
Resumo:
We have observed unusual asymmetrical refractive index change as a result of femtosecond laser inscription in a crystal without center of inversion. Profile of the refractive index change exhibits sign turn within the domain of femtosecond pulse exposure. © Owned by the authors, published by EDP Sciences, 2013.
Resumo:
The fabrication precision is one of the most critical challenges to the creation of practical photonic circuits composed of coupled high Q-factor microresonators. While very accurate transient tuning of microresonators based on local heating has been reported, the record precision of permanent resonance positioning achieved by post-processing is still within 1 and 5 GHz. Here we demonstrate two coupled bottle microresonators fabricated at the fiber surface with resonances that are matched with a better than 0.16 GHz precision. This corresponds to a better than 0.17 Å precision in the effective fiber radius variation. The achieved fabrication precision is only limited by the resolution of our optical spectrum analyzer and can be potentially improved by an order of magnitude.