22 resultados para fractal segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of automatically obtaining the object/background segmentation of a rigid 3D object observed in a set of images that have been calibrated for camera pose and intrinsics. Such segmentations can be used to obtain a shape representation of a potentially texture-less object by computing a visual hull. We propose an automatic approach where the object to be segmented is identified by the pose of the cameras instead of user input such as 2D bounding rectangles or brush-strokes. The key behind our method is a pairwise MRF framework that combines (a) foreground/background appearance models, (b) epipolar constraints and (c) weak stereo correspondence into a single segmentation cost function that can be efficiently solved by Graph-cuts. The segmentation thus obtained is further improved using silhouette coherency and then used to update the foreground/background appearance models which are fed into the next Graph-cut computation. These two steps are iterated until segmentation convergences. Our method can automatically provide a 3D surface representation even in texture-less scenes where MVS methods might fail. Furthermore, it confers improved performance in images where the object is not readily separable from the background in colour space, an area that previous segmentation approaches have found challenging. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of lung ventilation is one of the most reliable techniques in diagnosing pulmonary diseases. The time-consuming and bias-prone traditional methods using hyperpolarized H 3He and 1H magnetic resonance imageries have recently been improved by an automated technique based on 'multiple active contour evolution'. This method involves a simultaneous evolution of multiple initial conditions, called 'snakes', eventually leading to their 'merging' and is entirely independent of the shapes and sizes of snakes or other parametric details. The objective of this paper is to show, through a theoretical analysis, that the functional dynamics of merging as depicted in the active contour method has a direct analogue in statistical physics and this explains its 'universality'. We show that the multiple active contour method has an universal scaling behaviour akin to that of classical nucleation in two spatial dimensions. We prove our point by comparing the numerically evaluated exponents with an equivalent thermodynamic model. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an empirical analysis of long-range dependence in the returns of eight stock market indices, using the Rescaled Range Analysis (RRA) to estimate the Hurst exponent. Monte Carlo and bootstrap simulations are used to construct critical values for the null hypothesis of no long-range dependence. The issue of disentangling short-range and long-range dependence is examined. Pre-filtering by fitting a (short-range) autoregressive model eliminates part of the long-range dependence when the latter is present, while failure to pre-filter leaves open the possibility of conflating short-range and long-range dependence. There is a strong evidence of long-range dependence for the small central European Czech stock market index PX-glob, and a weaker evidence for two smaller western European stock market indices, MSE (Spain) and SWX (Switzerland). There is little or no evidence of long-range dependence for the other five indices, including those with the largest capitalizations among those considered, DJIA (US) and FTSE350 (UK). These results are generally consistent with prior expectations concerning the relative efficiency of the stock markets examined. © 2011 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is threefold: (1) to identify the underlying benefits sought by international visitors to Macau, China, which has emerged as a popular gambling destination in Asia; (2) to segment tourists visiting Macau by employing a cluster analysis based on the benefits sought; and (3) to examine any salient differences between the segment groups with regard to their behavioral characteristics, socio-economic characteristics, and demographic profiles. A convenience sample was used to collect data in the Macau International Airport, in the Macau Ferry Terminal, and at the border gate with Mainland China. A total 1,513 useful surveys were retained for data analysis. Cluster analysis discloses four distinct clusters: "convention and business seekers," "family and vacation seekers," "gambling and shopping seekers," and "multi-purpose seekers." Based on the results of our findings, several managerial implications are discussed. © Taylor & Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with understanding how Emergency Management Agencies (EMAs) influence public preparedness for mass evacuation across seven countries. Due to the lack of cross-national research (Tierney et al., 2001), there is a lack of knowledge on EMAs perspectives and approaches to the governance of public preparedness. This thesis seeks to address this gap through cross-national research that explores and contributes towards understanding the governance of public preparedness. The research draws upon the risk communication (Wood et al., 2011; Tierney et al., 2001) social marketing (Marshall et al., 2007; Kotler and Lee, 2008; Ramaprasad, 2005), risk governance (Walker et al., 2010, 2013; Kuhlicke et al., 2011; IRGC, 2005, 2007; Renn et al., 2011; Klinke and Renn, 2012), risk society (Beck, 1992, 1999, 2002) and governmentality (Foucault, 1978, 2003, 2009) literature to explain this governance and how EMAs responsibilize the public for their preparedness. EMAs from seven countries (Belgium, Denmark, Germany, Iceland, Japan, Sweden, the United Kingdom) explain how they prepare their public for mass evacuation in response to different types of risk. A cross-national (Hantrais, 1999) interpretive research approach, using qualitative methods including semi-structured interviews, documents and observation, was used to collect data. The data analysis process (Miles and Huberman, 1999) identified how the concepts of risk, knowledge and responsibility are critical for theorising how EMAs influence public preparedness for mass evacuation. The key findings grounded in these concepts include: - Theoretically, risk is multi-functional in the governance of public preparedness. It regulates behaviour, enables surveillance and acts as a technique of exclusion. - EMAs knowledge and how this influenced their assessment of risk, together with how they share the responsibility for public preparedness across institutions and the public, are key to the governance of public preparedness for mass evacuation. This resulted in a form of public segmentation common to all countries, whereby the public were prepared unequally.  - EMAs use their prior knowledge and assessments of risk to target public preparedness in response to particular known hazards. However, this strategy places the non-targeted public at greater risk in relation to unknown hazards, such as a man-made disaster. - A cross-national conceptual framework of four distinctive governance practices (exclusionary, informing, involving and influencing) are utilised to influence public preparedness. - The uncertainty associated with particular types of risk limits the application of social marketing as a strategy for influencing the public to take responsibility and can potentially increase the risk to the public.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segmentation is an important step in many medical imaging applications and a variety of image segmentation techniques exist. One group of segmentation algorithms is based on clustering concepts. In this article we investigate several fuzzy c-means based clustering algorithms and their application to medical image segmentation. In particular we evaluate the conventional hard c-means (HCM) and fuzzy c-means (FCM) approaches as well as three computationally more efficient derivatives of fuzzy c-means: fast FCM with random sampling, fast generalised FCM, and a new anisotropic mean shift based FCM. © 2010 by IJTS, ISDER.