35 resultados para finite element technique
Resumo:
The finite element process is now used almost routinely as a tool of engineering analysis. From early days, a significant effort has been devoted to developing simple, cost effective elements which adequately fulfill accuracy requirements. In this thesis we describe the development and application of one of the simplest elements available for the statics and dynamics of axisymmetric shells . A semi analytic truncated cone stiffness element has been formulated and implemented in a computer code: it has two nodes with five degrees of freedom at each node, circumferential variations in displacement field are described in terms of trigonometric series, transverse shear is accommodated by means of a penalty function and rotary inertia is allowed for. The element has been tested in a variety of applications in the statics and dynamics of axisymmetric shells subjected to a variety of boundary conditions. Good results have been obtained for thin and thick shell cases .
Resumo:
The human accommodation system has been extensively examined for over a century, with a particular focus on trying to understand the mechanisms that lead to the loss of accommodative ability with age (Presbyopia). The accommodative process, along with the potential causes of presbyopia, are disputed; hindering efforts to develop methods of restoring accommodation in the presbyopic eye. One method that can be used to provide insight into this complex area is Finite Element Analysis (FEA). The effectiveness of FEA in modelling the accommodative process has been illustrated by a number of accommodative FEA models developed to date. However, there have been limitations to these previous models; principally due to the variation in data on the geometry of the accommodative components, combined with sparse measurements of their material properties. Despite advances in available data, continued oversimplification has occurred in the modelling of the crystalline lens structure and the zonular fibres that surround the lens. A new accommodation model was proposed by the author that aims to eliminate these limitations. A novel representation of the zonular structure was developed, combined with updated lens and capsule modelling methods. The model has been designed to be adaptable so that a range of different age accommodation systems can be modelled, allowing the age related changes that occur to be simulated. The new modelling methods were validated by comparing the changes induced within the model to available in vivo data, leading to the definition of three different age models. These were used in an extended sensitivity study on age related changes, where individual parameters were altered to investigate their effect on the accommodative process. The material properties were found to have the largest impact on the decline in accommodative ability, in particular compared to changes in ciliary body movement or zonular structure. Novel data on the importance of the capsule stiffness and thickness was also established. The new model detailed within this thesis provides further insight into the accommodation mechanism, as well as a foundation for future, more detailed investigations into accommodation, presbyopia and accommodative restoration techniques.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
A three-dimensional finite element analysis (FEA) model with elastic-plastic anisotropy was built to investigate the effects of anisotropy on nanoindentation measurements for cortical bone. The FEA model has demonstrated a capability to capture the cortical bone material response under the indentation process. By comparison with the contact area obtained from monitoring the contact profile in FEA simulations, the Oliver-Pharr method was found to underpredict or overpredict the contact area due to the effects of anisotropy. The amount of error (less than 10% for cortical bone) depended on the indentation orientation. The indentation modulus results obtained from FEA simulations at different surface orientations showed a trend similar to experimental results and were also similar to moduli calculated from a mathematical model. The Oliver-Pharr method has been shown to be useful for providing first-order approximations in the analysis of anisotropic mechanical properties of cortical bone, although the indentation modulus is influenced by anisotropy.
Resumo:
The objective of this study is to demonstrate using weak form partial differential equation (PDE) method for a finite-element (FE) modeling of a new constitutive relation without the need of user subroutine programming. The viscoelastic asphalt mixtures were modeled by the weak form PDE-based FE method as the examples in the paper. A solid-like generalized Maxwell model was used to represent the deforming mechanism of a viscoelastic material, the constitutive relations of which were derived and implemented in the weak form PDE module of Comsol Multiphysics, a commercial FE program. The weak form PDE modeling of viscoelasticity was verified by comparing Comsol and Abaqus simulations, which employed the same loading configurations and material property inputs in virtual laboratory test simulations. Both produced identical results in terms of axial and radial strain responses. The weak form PDE modeling of viscoelasticity was further validated by comparing the weak form PDE predictions with real laboratory test results of six types of asphalt mixtures with two air void contents and three aging periods. The viscoelastic material properties such as the coefficients of a Prony series model for the relaxation modulus were obtained by converting from the master curves of dynamic modulus and phase angle. Strain responses of compressive creep tests at three temperatures and cyclic load tests were predicted using the weak form PDE modeling and found to be comparable with the measurements of the real laboratory tests. It was demonstrated that the weak form PDE-based FE modeling can serve as an efficient method to implement new constitutive models and can free engineers from user subroutine programming.
Resumo:
A Finite Element Analysis (FEA) model is used to explore the relationship between clogging and hydraulics that occurs in Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) in the United Kingdom (UK). Clogging is assumed to be caused by particle transport and an existing single collector efficiency model is implemented to describe this behaviour. The flow model was validated against HSSF TW survey results obtained from the literature. The model successfully simulated the influence of overland flow on hydrodynamics, and the interaction between vertical flow through the low permeability surface layer and the horizontal flow of the saturated water table. The clogging model described the development of clogging within the system but under-predicted the extent of clogging which occurred over 15 years. This is because important clogging mechanisms were not considered by the model, such as biomass growth and vegetation establishment. The model showed the usefulness of FEA for linking hydraulic and clogging phenomenon in HSSF TWs and could be extended to include treatment processes. © 2011 Springer Science+Business Media B.V.
Resumo:
The finite element method is now well established among engineers as being an extremely useful tool in the analysis of problems with complicated boundary conditions. One aim of this thesis has been to produce a set of computer algorithms capable of efficiently analysing complex three dimensional structures. This set of algorithms has been designed to permit much versatility. Provisions such as the use of only those parts of the system which are relevant to a given analysis and the facility to extend the system by the addition of new elements are incorporate. Five element types have been programmed, these are, prismatic members, rectangular plates, triangular plates and curved plates. The 'in and out of plane' stiffness matrices for a curved plate element are derived using the finite element technique. The performance of this type of element is compared with two other theoretical solutions as well as with a set of independent experimental observations. Additional experimental work was then carried out by the author to further evaluate the acceptability of this element. Finally the analysis of two large civil engineering structures, the shell of an electrical precipitator and a concrete bridge, are presented to investigate the performance of the algorithms. Comparisons are made between the computer time, core store requirements and the accuracy of the analysis, for the proposed system and those of another program.
Resumo:
The work described in this thesis deals with the development and application of a finite element program for the analysis of several cracked structures. In order to simplify the organisation of the material presented herein, the thesis has been subdivided into two Sections : In the first Section the development of a finite element program for the analysis of two-dimensional problems of plane stress or plane strain is described. The element used in this program is the six-mode isoparametric triangular element which permits the accurate modelling of curved boundary surfaces. Various cases of material aniftropy are included in the derivation of the element stiffness properties. A digital computer program is described and examples of its application are presented. In the second Section, on fracture problems, several cracked configurations are analysed by embedding into the finite element mesh a sub-region, containing the singularities and over which an analytic solution is used. The modifications necessary to augment a standard finite element program, such as that developed in Section I, are discussed and complete programs for each cracked configuration are presented. Several examples are included to demonstrate the accuracy and flexibility of the technique.
Resumo:
Economic factors such as the rise in cost of raw materials, labour and power, are compelling manufacturers of cold-drawn polygonal sections, to seek new production routes which will enable the expansion in the varieties of metals used and the inclusion of difficult-to-draw materials. One such method generating considerable industrial interest is the drawing of polygonal sections from round at elevated temperature. The technique of drawing mild steel, medium carbon steel and boron steel wire into octagonal, hexagonal and square sections from round at up to 850 deg C and 50% reduction of area in one pass has been established. The main objective was to provide a basic understanding of the process, with particular emphasis being placed on modelling using both experimental and theoretical considerations. Elevated temperature stress-strain data was obtained using a modified torsion testing machine. Data were used in the upper bound solution derived and solved numerically to predict drawing stress strain, strain-rate, temperature and flow stress distribution in the deforming zone for a range of variables. The success of this warm working process will, of course, depend on the use of a satisfactory elevated temperature lubricant, an efficient cooling system, a suitable tool material having good wear and thermal shock resistance and an efficient die profile design which incorporates the principle of least work. The merits and demerits of die materials such as tungsten carbide, chromium carbide, Syalon and Stellite are discussed, principally from the standpoint of minimising drawing force and die wear. Generally, the experimental and theoretical results were in good agreement, the drawing stress could be predicted within close limits and the process proved to be technically feasible. Finite element analysis has been carried out on the various die geometries and die materials, to gain a greater understanding of the behaviour of these dies under the process of elevated temperature drawing, and to establish the temperature distribution and thermal distortion in the deforming zone, thus establishing the optimum die design and die material for the process. It is now possible to predict, for the materials already tested, (i) the optimum drawing temperature range, (ii) the maximum possible reduction of area per pass, (iii) the optimum drawing die profiles and die materials, (iv) the most efficient lubricant in terms of reducing the drawing force and die wear.
Resumo:
The aim of this work was to investigate the feasibility of detecting and locating damage in large frame structures where visual inspection would be difficult or impossible. This method is based on a vibration technique for non-destructively assessing the integrity of structures by using measurements of changes in the natural frequencies. Such measurements can be made at a single point in the structure. The method requires that initially a comprehensive theoretical vibration analysis of the structure is undertaken and from it predictions are made of changes in dynamic characteristics that will occur if each member of the structure is damaged in turn. The natural frequencies of the undamaged structure are measured, and then routinely remeasured at intervals . If a change in the natural frequencies is detected a statistical method. is used to make the best match between the measured changes in frequency and the family of theoretical predictions. This predicts the most likely damage site. The theoretical analysis was based on the finite element method. Many structures were extensively studied and a computer model was used to simulate the effect of the extent and location of the damage on natural frequencies. Only one such analysis is required for each structure to be investigated. The experimental study was conducted on small structures In the laboratory. Frequency changes were found from inertance measurements on various plane and space frames. The computational requirements of the location analysis are small and a desk-top micro computer was used. Results of this work showed that the method was successful in detecting and locating damage in the test structures.
Resumo:
Methods of dynamic modelling and analysis of structures, for example the finite element method, are well developed. However, it is generally agreed that accurate modelling of complex structures is difficult and for critical applications it is necessary to validate or update the theoretical models using data measured from actual structures. The techniques of identifying the parameters of linear dynamic models using Vibration test data have attracted considerable interest recently. However, no method has received a general acceptance due to a number of difficulties. These difficulties are mainly due to (i) Incomplete number of Vibration modes that can be excited and measured, (ii) Incomplete number of coordinates that can be measured, (iii) Inaccuracy in the experimental data (iv) Inaccuracy in the model structure. This thesis reports on a new approach to update the parameters of a finite element model as well as a lumped parameter model with a diagonal mass matrix. The structure and its theoretical model are equally perturbed by adding mass or stiffness and the incomplete number of eigen-data is measured. The parameters are then identified by an iterative updating of the initial estimates, by sensitivity analysis, using eigenvalues or both eigenvalues and eigenvectors of the structure before and after perturbation. It is shown that with a suitable choice of the perturbing coordinates exact parameters can be identified if the data and the model structure are exact. The theoretical basis of the technique is presented. To cope with measurement errors and possible inaccuracies in the model structure, a well known Bayesian approach is used to minimize the least squares difference between the updated and the initial parameters. The eigen-data of the structure with added mass or stiffness is also determined using the frequency response data of the unmodified structure by a structural modification technique. Thus, mass or stiffness do not have to be added physically. The mass-stiffness addition technique is demonstrated by simulation examples and Laboratory experiments on beams and an H-frame.