27 resultados para engineering and maintenance enterprises
Resumo:
Purpose - The purpose of this research paper is to demonstrate how existing performance measurement may be adopted to measure and manage performance in extended enterprises. Design/methodology/approach - The paper reviews the literature in performance measurement and extended enterprises. It explains the collaborative architecture of an extended enterprise and demonstrates this architecture through a case study. A model for measuring and managing performance in extended enterprises is developed using the case study. Findings - The research found that due to structural differences between traditional and extended enterprises, the systems required to measure and manage the performance of extended enterprises, whilst being based upon existing performance measurement frameworks, would be structurally and operationally different. Based on this, a model for measuring and managing performance in extended enterprises is proposed which includes intrinsic and extrinsic inter-enterprise coordinating measures. Research limitations/implications - There are two limitations this research. First, the evidence is based on a single case, thus further cases should be studied to establish the generalisibility of the presented results. Second, the practical limitations of the EE performance measurement model should be established through longitudinal action research. Practical implications - In practice the model proposed requires collaborating organisations to be more open and share critical performance information with one another. This will require change in practices and attitudes. Originality/value - The main contribution this paper makes is that it highlights the structural differences between traditional and collaborative enterprises and specifies performance measurement and management requirements of these collaborative organisations. © Emerald Group Publishing Limited.
Resumo:
Background: Stereotypically perceived to be an ‘all male’ occupation, engineering has for many years failed to attract high numbers of young women [1,2]. The reasons for this are varied, but tend to focus on misconceptions of the profession as being more suitable for men. In seeking to investigate this issue a participatory research approach was adopted [3] in which two 17 year-old female high school students interviewed twenty high school girls. Questions focused on the girls’ perceptions of engineering as a study and career choice. The findings were recorded and analysed using qualitative techniques. The study identified three distinctive ‘influences’ as being pivotal to girls’ perceptions of engineering; pedagogical; social; and, familial. Pedagogical Influences: Pedagogical influences tended to focus on science and maths. In discussing science, the majority of the girls identified biology and chemistry as more ‘realistic’ whilst physics was perceived to more suitable for boys. The personality of the teacher, and how a particular subject is taught, proved to be important influences shaping opinions. Social Influences: Societal influences were reflected in the girls’ career choice with the majority considering medical or social science related careers. Although all of the girls believed engineering to be ‘male dominated’, none believed that a woman should not be engineer. Familial Influences: Parental influence was identified as key to career and study choice; only two of the girls had discussed engineering with their parents of which only one was being actively encouraged to pursue a career in engineering. Discussion: The study found that one of the most significant barriers to engineering is a lack of awareness. Engineering did not register in the girls’ lives, it was not taught in school, and only one had met a female engineer. Building on the study findings, the discussion considers how engineering could be made more attractive to young women. Whilst misconceptions about what an engineer is need to be addressed, other more fundamental pedagogical barriers, such as the need to make physics more attractive to girls and the need to develop the curriculum so as to meet the learning needs of 21st Century students are discussed. By drawing attention to the issues around gender and the barriers to engineering, this paper contributes to current debates in this area – in doing so it provides food for thought about policy and practice in engineering and engineering education.
Resumo:
As a global profession, engineering is integral to the maintenance and further development of society. Indeed, contemporary social problems requiring engineering solutions are not only a consequence of natural and ‘manmade’ disasters (such as the Japanese earthquake or the oil leakage in the Gulf of Mexico) but also encapsulate 21st Century dilemmas around sustainability, poverty and pollution [2,6,7]. Given the complexity of such problems and the constant need for innovation, the demand for engineering education to provide a ready supply of suitably qualified engineering graduates, able to make innovative decisions has never been higher [3,5]. Bearing this in mind, and taking account problems of attrition in engineering education [1,6,4] innovation in the way in which the curriculum is developed and delivered is crucial. CDIO [Conceive, Design, Implement, Operate] provides a potentially ground-breaking solution to such dilemmas. Aimed at equipping students with practical engineering skills supported by the necessary theoretical background, CDIO could potentially change the way engineering is perceived and experienced within higher education. Aston University introduced CDIO into its Mechanical Engineering and Design programmes in October 2011. From its induction, engineering education researchers have ‘shadowed’ the staff responsible for developing and teaching the programme. Utilising an Action Research Design, and adopting a mixed methodological research design, the researchers have worked closely with the teaching team to critically reflect on the processes involved in introducing CDIO into the curriculum. Concurrently, research has been conducted to capture students’ perspectives of CDIO. In evaluating the introduction of CDIO at Aston, the researchers have developed a distinctive research strategy with which to evaluate CDIO. It is the emergent findings from this research that form the basis of this paper. Although early-on in its development CDIO is making a significant difference to engineering education at the University. The paper draws attention to pedagogical, practical and professional issues – discussing each one in turn and in doing so critically analysing the value of CDIO from academic, student and industrial perspectives. The paper concludes by noting that whilst CDIO represents a forwardthinking approach to engineering education, the need for constant innovation in learning and teaching should not be forgotten. Indeed, engineering education needs to put itself at the forefront of pedagogic practice. Providing all-rounded engineers, ready to take on the challenges of the 21st Century!
Resumo:
Adopting a grounded theory methodology, the study describes how an event and pressure impact upon a process of deinstitutionalization and institutional change. Three case studies were theoretically sampled in relation to each other. They yielded mainly qualitative data from methods that included interviews, observations, participant observations, and document reviews. Each case consisted of a boundaried cluster of small enterprises that were not industry specific and were geographically dispersed. Overall findings describe how an event, i.e. a stimulus, causes disruption, which in turn may cause pressure. Pressure is then translated as a tension within the institutional environment, which is characterized by opposing forces that encourage institutional breakdown and institutional maintenance. Several contributions are made: Deinstitutionalization as a process is inextricable from the formation of institutions – both are needed to make sense of institutional change on a conceptual level but are also inseparable experientially in the field; stimuli are conceptually different to pressures; the historical basis of a stimulus may impact on whether pressure and institutional change occurs; pressure exists in a more dynamic capacity rather than only as a catalyst; institutional breakdown is a non-linear irregular process; ethical and survival pressures as new types were identified; institutional current, as an underpinning mechanism, influences how the tension between institutional breakdown and maintenance plays out.
Resumo:
Worldwide floods have become one of the costliest weather-related hazards, causing large-scale human, economic, and environmental damage during the recent past. Recent years have seen a large number of such flood events around the globe, with Europe and the United Kingdom being no exception. Currently, about one in six properties in England is at risk of flooding (EA, 2009), and the risk is expected to further increase in the future (Evans et al., 2004). Although public spending on community-level flood protection has increased and some properties are protected by such protection schemes, many properties at risk of flooding may still be left without adequate protection. As far as businesses are concerned, this has led to an increased need for implementing strategies for property-level flood protection and business continuity, in order to improve their capacity to survive a flood hazard. Small and medium-sized enterprises (SMEs) constitute a significant portion of the UK business community. In the United Kingdom, more than 99% of private sector enterprises fall within the category of SMEs (BERR, 2008). They account for more than half of employment creation (59%) and turnover generation (52%) (BERR, 2008), and are thus considered the backbone of the UK economy. However, they are often affected disproportionately by natural hazards when compared with their larger counterparts (Tierney and Dahlhamer, 1996; Webb, Tierney, and Dahlhamer, 2000; Alesch et al., 2001) due to their increased vulnerability. Previous research reveals that small businesses are not adequately prepared to cope with the risk of natural hazards and to recover following such events (Tierney and Dahlhamer, 1996; Alesch et al., 2001; Yoshida and Deyle, 2005; Crichton, 2006; Dlugolecki, 2008). For instance, 90% of small businesses do not have adequate insurance coverage for their property (AXA Insurance UK, 2008) and only about 30% have a business continuity plan (Woodman, 2008). Not being adequately protected by community-level flood protection measures as well as property- and business-level protection measures threatens the survival of SMEs, especially those located in flood risk areas. This chapter discusses the potential effects of flood hazards on SMEs and the coping strategies that the SMEs can undertake to ensure the continuity of their business activities amid flood events. It contextualizes this discussion within a survey conducted under the Engineering and Physical Sciences Research Council (EPSRC) funded research project entitled “Community Resilience to Extreme Weather — CREW”.
Resumo:
Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.
Resumo:
The UK Government and large employers have recognised the skills gap between learners leaving the education system and the requirements of employers. The current system is seen to be failing significant numbers of learners and has been accused of schooling but not educating our young people. University-led technical colleges are one part of the solution being developed to provide outstanding engineering education. This paper focusses on the learning experience that the Aston University Engineering Academy, the first University-led University Technical College (UTC), has created for entrants to the Engineering Academy in September 2012, when it opens in brand new buildings next to the University. The overall aim is to produce technically literate young people that have business and enterprise skills as well as insight into the diverse range of opportunities in Engineering and Technical disciplines. The project has brought University staff and students together with employers and Academy staff to optimise the engineering education that they will receive. The innovative model presented has drawn on research from across the world in the implementation of this new type of school, as well as educational practices from the USA and the Scandinavian countries. The resulting curriculum is authentic and exciting and expands the University model of problem-based learning and placements into the secondary school environment. The benefits of this close partnership for University staff and students, the employers and the Academy staff are expanded on and the paper concludes with a prediction of progression routes from the Academy.
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
This research paper reports on the production of a biocompatible and biodegradable material to be used in a polymer stent used for counteracting the occurrence of anastomotic leakage following gastrointestinal surgery. Chitosan was blended with polycaprolactone in a solvent mixture of acetic acid and water. Membranes were formed with a range of 50/50%, 60/40%, 65/35%, 70/30% and 80/20% polycaprolactone/chitosan. The tensile properties of the blends were examined over a time period to access material degradation. In addition the biocompatibilities of the polycaprolactone/chitosan blends were tested for cytotoxic effect using primary tendon fibroblastic cells. This research concluded that the polycaprolactone/chitosan was non-toxic to the fibroblasts cells in-vitro. Analysis of the mechanical properties of the blends showed a range of mechanical strengths and polymer life spans. Overall, blends of 65/35%, 70/30% and 80/20% polycaprolactone/chitosan emerged as possible candidates for the production of a gastrointestinal stent. © 2011 Inderscience Enterprises Ltd.
Resumo:
Clogging is a major operational and maintenance issue associated with the use of subsurface flow wetlands for wastewater treatment, and can ultimately limit the lifetime of the system. This review considers over two decades of accumulated knowledge regarding clogging in both vertical and horizontal subsurface flow treatment wetlands. The various physical, chemical and biological factors responsible for clogging are identified and discussed. The occurrence of clogging is placed into the context of various design and operational parameters such as wastewater characteristics, upstream treatment processes, intermittent or continuous operation, influent distribution, and media type. This information is then used to describe how clogging develops within, and subsequently impacts, common variants of subsurface flow treatment wetland typically used in the U.S., U.K., France and Germany. Comparison of these systems emphasized that both hydraulic loading rate and solids loading rate need to be considered when designing systems to operate robustly, i.e. hydraulic overloading makes horizontal-flow tertiary treatment systems in the U.K. more susceptible to clogging problems than vertical-flow primary treatment systems in France. Future research should focus on elucidating the underlying mechanisms of clogging as they relate to the design, operation, and maintenance of subsurface flow treatment wetlands. © 2010 Elsevier B.V.
Resumo:
The development of novel, affordable and efficacious therapeutics will be necessary to ensure the continued progression in the standard of global healthcare. With the potential to address previously unmet patient needs as well as tackling the social and economic effects of chronic and age-related conditions, cell therapies will lead the new generation of healthcare products set to improve health and wealth across the globe. However, if many of the small to medium enterprises (SMEs) engaged in much of the commercialization efforts are to successfully traverse the ‘Valley of Death’ as they progress through clinical trials, there are a number of challenges that must be overcome. No longer do the challenges remain biological but rather a series of engineering and manufacturing issues must also be considered and addressed.
Resumo:
The breadth and depth of available clinico-genomic information, present an enormous opportunity for improving our ability to study disease mechanisms and meet the individualised medicine needs. A difficulty occurs when the results are to be transferred 'from bench to bedside'. Diversity of methods is one of the causes, but the most critical one relates to our inability to share and jointly exploit data and tools. This paper presents a perspective on current state-of-the-art in the analysis of clinico-genomic data and its relevance to medical decision support. It is an attempt to investigate the issues related to data and knowledge integration. Copyright © 2010 Inderscience Enterprises Ltd.