42 resultados para energy-efficient


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change are driving the utilisation of renewable feedstocks as alternative, sustainable fuel sources. Catalysis has a rich history of facilitating energy efficient, selective molecular transformations, and contributes to 90% of current chemical manufacturing processes. In a post-petroleum era, catalysis will be pivotal in overcoming the scientific and engineering barriers to economically feasible bio-fuels. This perspective highlights some recent developments in heterogeneous catalysts for the synthesis of biodiesel from renewable resources, derived from plant and aquatic oil sources. Particular attention will be paid to the importance of catalyst pore architecture, surface polarity and acid and base properties, in meeting the challenge of transforming highly polar and viscous bio-based reactants. © 2012 The Royal Society of Chemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dwindling fossil fuel reserves, and growing concerns over CO2 emissions and associated climate change, are driving the quest for renewable feedstocks to provide alternative, sustainable fuel sources. Catalysis has a rich history of facilitating energy efficient, selective molecular transformations, and in a post-petroleum era will play a pivotal role in overcoming the scientific and engineering barriers to economically viable, and sustainable, biofuels derived from renewable resources. The production of second generation biofuels, derived from biomass sourced from inedible crop components, e.g. agricultural or forestry waste, or alternative non-food crops such as Switchgrass or Jatropha Curcas that require minimal cultivation, necessitate new heterogeneous catalysts and processes to transform these polar and viscous feedstocks [1]. Here we show how advances in the rational design of nanoporous solid acids and bases, and their utilisation in novel continuous reactors, can deliver superior performance in the energy-efficient esterification and transesterification of bio-oil components into biodiesel [2-4]. Notes: [1] K. Wilson, A.F. Lee, Cat. Sci. Tech. 2012 ,2, 884. [2] J. Dhainaut, J.-P. Dacquin, A. F. Lee, K. Wilson, Green Chem. 2010 , 12, 296. [3] C. Pirez, J.-M. Caderon, J.-P. Dacquin, A.F. Lee, K. Wilson, ACS Catal. 2012 , 2, 1607. [4] J.J. Woodford, J.-P. Dacquin, K. Wilson, A.F. Lee, Energy Environ. Sci. 2012 , 5, 6145.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of routes to utilise renewable feedstocks as sustainable sources of fuel and chemicals. Catalysis has a rich history of facilitating energy-efficient selective molecular transformations and contributes to 90% of chemical manufacturing processes and to more than 20% of all industrial products. In a post-petroleum era, catalysis will be central to overcoming the engineering and scientific barriers to economically feasible routes to biofuels and chemicals. This chapter will highlight some of the recent developments in heterogeneous catalytic technology for the synthesis of fuels and chemicals from renewable resources, derived from plant and aquatic oil sources as well as lignocellulosic feedstocks. Particular attention will be paid to the challenges faced when developing new catalysts and importance of considering the design of pore architectures and effect of tuning surface polarity to improve catalyst compatibility with highly polar bio-based substrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of routes to utilize renewable feedstocks as sustainable sources of fuels. Catalysis has a rich history of facilitating energy efficient selective molecular transformations and contributes to 90% of chemical manufacturing processes and to more than 20% of all industrial products. In a post-petroleum era catalysis will be central to overcoming the engineering and scientific barriers to economically feasible routes to bio-fuels. This article will highlight some of the recent developments in the development of solid acid and base catalysts for the transesterification of oils to biodiesel. Particular attention will be paid to the challenges faced when developing new catalysts and importance of considering the design of pore architectures to improve in-pore diffusion of bulky substrates. © 2011 Materials Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a pressing need for sustainable transportation fuels to combat both climate change and dwindling fossil fuel reserves. Biodiesel, synthesised from non-food plant (e.g., Jatropha curcas) or algal crops is one possible solution, but its energy efficient production requires design of new solid catalysts optimized for the bulky triglyceride and fatty acid feedstocks. Here we report on the synthesis of hierarchical macroporous-mesoporous silica and alumina architectures, and their subsequent functionalization by propylsulfonic acid groups or alkaline earth oxides to generate novel solid acid and base catalysts. These materials possess high surface areas and well-defined, interconnected macro-mesopore networks with respective narrow pore size distributions tuneable around 300 nm and 5 nm. Their high conductivity and improved mass transport characteristics enhance activity towards transesterification of bulky tricaprylin and palmitic acid esterification, over mesoporous analogues. This opens the way to the wider application of hierarchical catalysts in biofuel synthesis and biomass conversion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biofuels are promising renewable energy sources and can be derived from vegetable oil feedstocks. Although solid catalysts show great promise in plant oil triglyceride transesterification to biodiesel, the identification of active sites and operating surface nanostructures created during their processing is essential for the development of efficient heterogeneous catalysts. Systematic, direct observations of dynamic MgO nanocatalysts from a magnesium hydroxide-methoxide precursor were performed under controlled calcination conditions using novel in situ aberration corrected-transmission electron microscopy at the 0.1 nm level and quantified with catalytic reactivity and physico-chemical studies. Surface structural modifications and the evolution of extended atomic scale glide defects implicate coplanar anion vacancies in active sites in the transesterification of triglycerides to biodiesel. The linear correlation between surface defect density (and therefore polarisability) and activity affords a simple means to fine tune new, energy efficient nanocatalysts for biofuel synthesis. © 2009 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomass is the term given to naturally-produced organic matter resulting from photosynthesis, and represents the most abundant organic polymers on Earth. Consequently, there has been great interest in the potential exploitation of lignocellulosic biomass as a renewable feedstock for energy, materials and chemicals production. The energy sector has largely focused on the direct thermochemical processing of lignocellulose via pyrolysis/gasification for heat generation, and the co-production of bio-oils and bio-gas which may be upgraded to produce drop-in transportation fuels. This mini-review describes recent advances in the design and application of solid acid catalysts for the energy efficient upgrading of pyrolysis biofuels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since privatisation, maintenance of DNO LV feeder maximum demand information has gradually demised in some Utility Areas, and it is postulated that lack of knowledge about 11kV and LV electrical networks is resulting in a less economical and energy efficient Network as a whole. In an attempt to quantify the negative impact, this paper examines ten postulated new connection scenarios for a set of real LV load readings, in order to find the difference in design solutions when LV load readings were and were not known. The load profiles of the substations were examined in order to explore the utilisation profile. It was found that in 70% of the scenarios explored, significant cost differences were found. These cost differences varied by an average of 1000%, between schemes designed with and without load readings. Obviously, over designing a system and therefore operating more, underutilised transformers becomes less financially beneficial and less energy efficient. The paper concludes that new connection design is improved in terms of cost when carried out based on known LV load information and enhances the case for regular maximum feeder demand information and/or metering of LV feeders. © 2013 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the research project was to gain d complete and accurate accounting of the needs and deficiencies of materials selection and design data, with particular attention given to the feasibility of a computerised materials selection system that would include application analysis, property data and screening techniques. The project also investigates and integrates the three major aspects of materials resources, materials selection and materials recycling. Consideration of the materials resource base suggests that, though our discovery potential has increased, geologic availability is the ultimate determinant and several metals may well become scarce at the same time, thus compounding the problem of substitution. With around 2- to 20- million units of engineering materials data, the use of a computer is the only logical answer for scientific selection of materials. The system developed at Aston is used for data storage, mathematical computation and output. The system enables programs to be run in batch and interactive (on-line) mode. The program with modification can also handle such variables as quantity of mineral resources, energy cost of materials and depletion and utilisation rates of strateqic materials. The work also carries out an in-depth study of copper recycling in the U.K. and concludes that, somewhere in the region of 2 million tonnes of copper is missing from the recycling cycle. It also sets out guidelines on product design and conservation policies from the recyclability point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last few years have witnessed an unprecedented increase in the price of energy available to industry in the United Kingdom and worldwide. The steel industry, as a major consumer of energy delivered in U.K. (8% of national total and nearly 25% of industrial total) and whose energy costs currently form some 28% of the total manufacturing cost, is very much aware of the need to conserve energy. Because of the complexities of steelmaking processes it is imperative that a full understanding of each process and its interlinking role in an integrated steelworks is understood. An analysis of energy distribution shows that as much as 70% of heat input is dissipated to the environment in a variety of forms. Of these, waste gases offer the best potential for energy conservation. The study identifies areas for and discusses novel methods of energy conservation in each process. Application of these schemes in BSC works is developed and their economic incentives highlighted. A major part of this thesis describes design, development and testing of a novel ceramic rotary regenerator for heat recovery from high temperature waste gases, where no such system is available. The regenerator is a compact, efficient heat exchanger. Application of such a system to a reheating furnace provides a fuel saving of up to 40%. A mathematical model developed is verified on the pilot plant. The results obtained confirm the success of the concept and material selection and outlines the work needed to develop an industrial unit. Last, but not least, the key position of an energy manager in an energy conservation programme is identified and a new Energy Management Model for the BSC is developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of comparative numerical study of femtosecond laser inscription for fundamental and second harmonic of Yb-doped laser. We have found that second harmonic is more efficient in terms of amount of absorbed energy which leads to lower inscription threshold. Hence this regime is more attractive for applications in femtosecond laser microfabrication. We observed the different size of modified domain on initial pulse energy and different spectrum dynamics during the pulse propagation for fundamental and second harmonics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of numerical modelling of energy deposition in single-shot femtosecond laser inscription for fundamental and second harmonics, which shows that second harmonic is more efficient considering the amount of absorbed energy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of comparative numerical study of energy deposition in single shot femtosecond laser inscription for fundamental and second harmonic of Yb-doped fiber laser. We have found that second harmonic is more efficient in absorbing energy which leads to lower inscription threshold. Hence this regime is more attractive for applications in femtosecond laser microfabrication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A passively switched Ho3+, Pr3+ codoped fluoride fiber laser using a semiconductor saturable absorber mirror (SESAM) is demonstrated. Q-switching and partial mode-locking were observed with the output power produced at a slope efficiency of 24% with respect to the absorbed pump power. The partially mode-locked 2.87 µm pulses operated at a repetition rate of 27.1 MHz with an average power of 132 mW, pulse energy of 4.9 nJ, and pulse width of 24 ps.