19 resultados para efficiency measurement
Resumo:
Although considerable effort has been invested in the measurement of banking efficiency using Data Envelopment Analysis, hardly any empirical research has focused on comparison of banks in Gulf States Countries This paper employs data on Gulf States banking sector for the period 2000-2002 to develop efficiency scores and rankings for both Islamic and conventional banks. We then investigate the productivity change using Malmquist Index and decompose the productivity into technical change and efficiency change. Further, hypothesis testing and statistical precision in the context of nonparametric efficiency and productivity measurement have been used. Specially, cross-country analysis of efficiency and comparisons of efficiencies between Islamic banks and conventional banks have been investigated using Mann-Whitney test.
Resumo:
Efficiency in the mutual fund (MF), is one of the issues that has attracted many investors in countries with advanced financial market for many years. Due to the need for frequent study of MF's efficiency in short-term periods, investors need a method that not only has high accuracy, but also high speed. Data envelopment analysis (DEA) is proven to be one of the most widely used methods in the measurement of the efficiency and productivity of decision making units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper uses neural network back-ropagation DEA in measurement of mutual funds efficiency and shows the requirements, in the proposed method, for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of a large set of MFs. Copyright © 2014 Inderscience Enterprises Ltd.
Resumo:
Health care organizations must continuously improve their productivity to sustain long-term growth and profitability. Sustainable productivity performance is mostly assumed to be a natural outcome of successful health care management. Data envelopment analysis (DEA) is a popular mathematical programming method for comparing the inputs and outputs of a set of homogenous decision making units (DMUs) by evaluating their relative efficiency. The Malmquist productivity index (MPI) is widely used for productivity analysis by relying on constructing a best practice frontier and calculating the relative performance of a DMU for different time periods. The conventional DEA requires accurate and crisp data to calculate the MPI. However, the real-world data are often imprecise and vague. In this study, the authors propose a novel productivity measurement approach in fuzzy environments with MPI. An application of the proposed approach in health care is presented to demonstrate the simplicity and efficacy of the procedures and algorithms in a hospital efficiency study conducted for a State Office of Inspector General in the United States. © 2012, IGI Global.
Resumo:
This paper presents for the first time the concept of measurement assisted assembly (MAA) and outlines the research priorities of the realisation of this concept in the industry. MAA denotes a paradigm shift in assembly for high value and complex products and encompasses the development and use of novel metrology processes for the holistic integration and capability enhancement of key assembly and ancillary processes. A complete framework for MAA is detailed showing how this can facilitate a step change in assembly process capability and efficiency for large and complex products, such as airframes, where traditional assembly processes exhibit the requirement for rectification and rework, use inflexible tooling and are largely manual, resulting in cost and cycle time pressures. The concept of MAA encompasses a range of innovativemeasurement- assisted processes which enable rapid partto- part assembly, increased use of flexible automation, traceable quality assurance and control, reduced structure weight and improved levels of precision across the dimensional scales. A full scale industrial trial of MAA technologies has been carried out on an experimental aircraft wing demonstrating the viability of the approach while studies within 140 smaller companies have highlighted the need for better adoption of existing process capability and quality control standards. The identified research priorities for MAA include the development of both frameless and tooling embedded automated metrology networks. Other research priorities relate to the development of integrated dimensional variation management, thermal compensation algorithms as well as measurement planning and inspection of algorithms linking design to measurement and process planning. © Springer-Verlag London 2013.