48 resultados para distribution of the soil aggregates
Resumo:
Deposition of insoluble prion protein (PrP) in the brain in the form of protein aggregates or deposits is characteristic of the ‘transmissible spongiform encephalopathies’ (TSEs). Understanding the growth and development of PrP aggregates is important both in attempting to elucidate the pathogenesis of prion disease and in the development of treatments designed to inhibit the spread of prion pathology within the brain. Aggregation and disaggregation of proteins and the diffusion of substances into the developing aggregates (surface diffusion) are important factors in the development of protein deposits. Mathematical models suggest that if either aggregation/disaggregation or surface diffusion is the predominant factor, then the size frequency distribution of the resulting protein aggregates will be described by either a power-law or a log-normal model respectively. This study tested this hypothesis for two different populations of PrP deposit, viz., the diffuse and florid-type PrP deposits characteristic of patients with variant Creutzfeldt-Jakob disease (vCJD). The size distributions of the florid and diffuse deposits were fitted by a power-law function in 100% and 42% of brain areas studied respectively. By contrast, the size distributions of both types of aggregate deviated significantly from a log-normal model in all areas. Hence, protein aggregation and disaggregation may be the predominant factor in the development of the florid deposits. A more complex combination of factors appears to be involved in the pathogenesis of the diffuse deposits. These results may be useful in the design of treatments to inhibit the development of PrP aggregates in vCJD.
Resumo:
The density of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in Glees and Marsland stained sections of the hippocampus and parahippocampal gyrus (PHG) in 20 pateints with Alzheimer's disease. In addition, in six of the patients, the density of beta/A4 protein deposits, as revealed by immunohistochemistry and neurofibrillary changes demonstrated with the Gallyas stain, were studied in adjacent sections. The density of Glees SP and beta/A4 deposits was significantly greater in area CA1 of the hippocampus and in the subiculum than in the PHG. Hence, neurofibrillary degeneration appears to be a more important lesion than beta/A4 deposition in the hippocampus compared with the PHG. In addition, the detailed distribution of the lesions in the hippocampus could be explained if beta/A4/SP and NFT occur on the axon terminals and in the cell bodies respectively of the same neurons.
Resumo:
The spatial distribution of the diffuse, primitive, and classic amyloid-beta deposits was studied in the upper laminae of the superior frontal gyrus in cases of sporadic Alzheimer disease (AD). Amyloid-beta-stained tissue was counterstained with collagen IV to determine whether the spatial distribution of the amyloid-beta deposits along the cortex was related to blood vessels. In all patients, amyloid-beta deposits and blood vessels were aggregated into distinct clusters and in many patients, the clusters were distributed with a regular periodicity along the cortex. The clusters of diffuse and primitive deposits did not coincide with the clusters of blood vessels in most patients. However, the clusters of classic amyloid-beta deposits coincided with those of the large diameter (>10 microm) blood vessels in all patients and with clusters of small-diameter (< 10 microm) blood vessels in four patients. The data suggest that, of the amyloid-beta subtypes, the clusters of classic amyloid-beta deposits appear to be the most closely related to blood vessels and especially to the larger-diameter, vertically penetrating arterioles in the upper cortical laminae.
Resumo:
The laminar distribution of diffuse, primitive and classic beta-amyloid (Abeta) deposits and blood vessels was studied in the frontal cortex of patients with Alzheimer’s disease (AD). In most patients, the density of the diffuse and primitive Abeta deposits was greatest in the upper cortical layers and the classic deposits in the deeper cortical layers. The distribution of the larger blood vessels (>10 micron in diameter) was often bimodal with peaks in the upper and deeper cortical layers. The incidence of capillaries (<10 micron) was significantly higher in the deeper cortical layers in most patients. Multiple regression analysis selected vertical distance below the pia mater as the most significant factor correlated with the Abeta deposit density. With the exception of the classic deposits in two patients, there was no evidence that these vertical distributions were related to laminar variations in the incidence of large or small blood vessels.
Resumo:
To determine whether genetic factors influence frontal lobe degeneration in Alzheimer's disease (AD), the laminar distributions of diffuse, primitive, and classic β-amyloid (Aβ) peptide deposits were compared in early-onset familial AD (EO-FAD) linked to mutations of the amyloid precursor protein (APP) or presenilin 1 (PSEN1) gene, late-onset familial AD (LO-FAD), and sporadic AD (SAD). The influence of apolipoprotein E (Apo E) genotype on laminar distribution was also studied. In the majority of FAD and SAD cases, maximum density of the diffuse and primitive Aβ deposits occurred in the upper cortical layers, whereas the distribution of the classic Aβ deposits was more variable, either occurring in the lower layers, or a double-peaked (bimodal) distribution was present, density peaks occurring in upper and lower layers. The cortical layer at which maximum density of Aβ deposits occurred and maximum density were similar in EO-FAD, LO-FAD and SAD. In addition, there were no significant differences in distributions in cases expressing Apo E ε4 alleles compared with cases expressing the ε2 or ε3 alleles. These results suggest that gene expression had relatively little effect on the laminar distribution of Aβ deposits in the frontal lobe of the AD cases studied. Hence, the pattern of frontal lobe degeneration in AD is similar regardless of whether it is associated with APP and PSEN1, mutation, allelic variation in Apo E, or with SAD.
Resumo:
The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. © 2012 Kvantovaya Elektronika and Turpion Ltd.
Resumo:
The laminar distribution of the neurofilament inclusions (NI) and swollen achromatic neurons (SN) was studied in gyri of the temporal cortex in four patients with neurofilament inclusion disease (NID). In 84% of gyri analysed, the density of the NI was maximal in the lower cortical laminae. The distribution of the SN was more variable than the NI. Density was maximal in the lower cortex in 46% of gyri, in the upper cortical laminae in 8% of gyri, and a bimodal distribution in 15% of gyri. In the remaining gyri, there was a more even distribution of SN with cortical depth. In 31% of gyri, the vertical density of the NI was positively correlated with that of the SN. The data suggest that cortical degeneration in the temporal lobe of NID initially affects neurons in the lower laminae. Subsequently, the pathology may spread to affect much of the cortical profile, the SN preceding the appearance of the NI.
Resumo:
This study tested whether the laminar distribution of the β-amyloid (Aβ) deposits in dementia with Lewy bodies (DLB) cases with significant Alzheimer's disease (AD) pathology (DLB/AD) was similar to "pure" AD. In DLB/AD, the maximum density of the diffuse and primitive deposits occurred either in the upper laminae or a bimodal distribution was present with density peaks in the upper and lower laminae. A bimodal distribution of the classic Aβ deposits was also observed. Compared with AD, DLB/AD cases had fewer primitive deposits relative to the diffuse and classic deposits; the primitive deposits exhibited a bimodal distribution more frequently, and the diffuse deposits occurred more often in the upper laminae. These results suggest that Aβ pathology in DLB/AD may not simply represent the presence of associated AD. © 2006 Sage Publications.
Resumo:
The laminar distribution of the vacuolation ('spongiform change'), surviving neurons, glial cell nuclei, and prion protein (PrP) deposits was studied in the frontal, parietal and temporal cortex in 11 cases of sporadic Creutzfeldt-Jakob disease (CJD). The distribution of the vacuolation was mainly bimodal with peaks of density in the upper and lower cortical laminae. The density of surviving neurons was greatest in the upper cortex while glial cell nuclei were distributed largely in the lower cortex. PrP deposits exhibited either a bimodal distribution or reached a maximum density in the lower cortex. The vertical density of the vacuoles was positively correlated with the surviving neurons in 12/44 of cortical areas studied, with glial cell nuclei in 16/44 areas and with PrP deposition in 15/28 areas. PrP deposits were positively correlated with glial cell nuclei in 12/31 areas. These results suggest that in sporadic CJD: (1) the lower cortical laminae are the most affected by the pathological changes; (2) the development of the vacuolation may precede that of the extracellular PrP deposits and the glial cell reaction; and (3) the pathological changes may develop initially in the lower cortical laminae and spread to affect the upper cortical laminae. © 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The density and spatial distribution of the vacuoles, glial cell nuclei and glial cytoplasmic inclusions (GCI) were studied in the white matter of various cortical and subcortical areas in 10 cases of multiple system atrophy (MSA). Vacuolation was more prevalent in subcortical than cortical areas and especially in the central tegmental tract. Glial cell nuclei widespread in all areas of the white matter studied; overall densities of glial cell nuclei being significantly greater in the central tegmental tract and frontal cortex compared with areas of the pons. The GCI were present most consistently in the external and internal capsules, the central tegmental tract and the white matter of the cerebellar cortex. The density of the vacuoles was greater in the MSA brains than in the control brains but glial cell density was similar in both groups. In the majority of areas, the pathological changes were distributed across the white matter randomly, uniformly, or in large diffuse clusters. In most areas, there were no spatial correlations between the vacuoles, glial cell nuclei and GCI. These results suggest: (i) there is significant degeneration of the white matter in MSA characterized by vacuolation and GCI; (ii) the central tegmental tract is affected significantly more than the cortical tracts; (iii) pathological changes are diffusely rather than topographically distributed across the white matter; and (iv) the development of the vacuoles and GCI appear to be unrelated phenomena. © 2007 Japanese Society of Neuropathology.
Resumo:
Objective: To determine the laminar distribution of the pathological changes in the frontal and temporal lobe in neuronal intermediate filament inclusion disease (NIFID). Method: The distribution of the alpha-intenexin-positive neuronal cytoplasmic inclusions (NCI), surviving neurons, swollen achromatic neurons (SN) and glial cell nuclei was studied across the cortex in gyri of the frontal and temporal lobe in 10 cases of NIFID. Results: The distribution of the NCI was highly variable within different gyri, a peak in the upper cortex, a bimodal distribution with peaks of density in the upper and lower laminae, or no significant variation in density across the cortex. The surviving neurons were either bimodally distributed or exhibited no significant change in density across the cortex. The SN and glial cell nuclei were most abundant in the lower cortical laminae. In half of the gyri, variations in density of the NCI across the cortex were positively correlated with the SN. In some gyri, the surviving neurons were positively correlated with the SN and negatively correlated with the glial cell nuclei. In addition, the SN and glial cell nuclei were positively correlated in over half the gyri studied. Conclusion: The data suggest that frontal and temporal lobe degeneration in NIFID characterized by NCI, SN, neuronal loss and gliosis extends across the cortical laminae with considerable variation between cases and gyri. alpha-internexin-positive neurons in the upper laminae appear to be particularly vulnerable. The gliosis appears to be largely correlated with the appearance of SN and with neuronal loss and not related to the NCI.
Resumo:
To test the hypothesis that the distribution of the pathology in variant Creutzfeldt-Jakob disease (vCJD) represents haematogenous spread of the disease, we studied the spatial correlation between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles in the cerebral cortex, hippocampus, dentate gyrus, and cerebellum of 11 cases of the disease. In the majority of areas, there were no significant spatial correlations between either the vacuolation or the diffuse type of PrP deposit and the blood vessels. By contrast, a consistent pattern of spatial correlation was observed between the florid PrP deposits and blood vessels mainly in the cerebral cortex. The frequency of positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower laminae. Hence, with the exception of the florid deposits, the data do not demonstrate a spatial relationship between the pathological features of vCJD and blood vessels. The spatial correlation of the florid deposits and blood vessels may be attributable to factors associated with the blood vessels that promote the aggregation of PrP to form a condensed core rather than reflecting the haematogenous spread of the disease. © 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The spatial pattern of the vacuolation ('spongiform change') was studied in areas of the cerebral cortex in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). The vacuoles were evenly distributed along the cortex in 40/106 (38%) areas studied and randomly distributed in 6/106 (5.6%) areas. In 22/106 (21%) areas, the vacuoles were aggregated into clusters, 50 - 1600 μm in diameter and which were distributed in a regular pattern parallel to the pia mater. In 38/106 (36%) areas, large clusters of vacuoles, at least 1600 μm in diameter, were present. No significant differences in spatial patterns were observed between the different cortical regions or between the upper and lower laminae. In addition, age at onset and duration of the disease had no significant affect on spatial patterns. The spatial distribution of the vacuolation contrasts with that reported in sporadic CJD (sCJD) suggesting a different pattern of cortical degeneration in vCJD.
Resumo:
In induction machines the tooth frequency losses due to permeance variation constitute a signif'icant, portion of the total loss. In order to predict and estimate these losses it, is essential to obtain a clear understanding of the no-load distribution of the air gap magnetic field and the magnitude of flux pulsation in both stator and rotor teeth. The existing theories and methods by which the air gap permeance variation in a doubly slotted structure is calculated are either empirical or restricted. The main objective of this thesis is to obtain a detailed analysis of the no-load air gap magnetic field distribution and the effect of air gap geometry on the magnitude and waveform of the tooth flux pulsation. In this thesis a detaiiled theoretical and experimental analysis of flux distribution not only leads to a better understanding of the distribution of no-load losses but also provides theoretical analysis for calculating the losses with greater accuracy
Resumo:
The spatial pattern of the vacuolation ('spongiform change') was studied in the upper and lower laminae of the cerebral cortex, the CA1/CA2 sectors of the hippocampus and the molecular layer of the cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (CJD). Individual vacuoles were grouped into clusters, 50 to >1600 μm in diameter and, in the majority of tissue sections, the vacuole clusters were distributed with regular periodicity parallel to the tissue boundary. The size of the vacuole clusters was positively correlated with patient age in the lower laminae of the occipital cortex and the inferior temporal gyrus (ITG) and negatively correlated with age in the hippocampus. In addition, the size of the vacuole clusters was positively correlated with disease duration in the upper laminae of the ITG. The size and distribution of the vacuole clusters suggests that the vacuolation in CJD reflects the degeneration of specific brain pathways and supports the hypothesis that prion pathology may spread through the brain along well defined anatomical pathways. (C) 2000 Elsevier Science Ireland Ltd.