48 resultados para decision support tool
Resumo:
The importance of non-technical factors in the design and implementation of information systems has been increasingly recognised by both researchers and practitioners, and recent literature highlights the need for new tools and techniques with an organisational, rather than technical, focus. The gap between what is technically possible and what is generally practised, is particularly wide in the sales and marketing field. This research describes the design and implementation of a decision support system (DSS) for marketing planning and control in a small, but complex company and examines the nature of the difficulties encountered. An intermediary with functional, rather than technical, expertise is used as a strategy for overcoming these by taking control of the whole of the systems design and implementation cycle. Given the practical nature of the research, an action research approach is adopted with the researcher undertaking this role. This approach provides a detailed case study of what actually happens during the DSS development cycle, allowing the influence of organisational factors to be captured. The findings of the research show how the main focus of the intermediary's role needs to be adapted over the systems development cycle; from coordination and liaison in the pre-design and design stages, to systems champion during the first part of the implementation stage, and finally to catalyst to ensure that the DSS is integrated into the decision-making process. Two practical marketing exercises are undertaken which illustrate the nature of the gap between the provision of information and its use. The lack of a formal approach to planning and control is shown to have a significant effect on the way the DSS is used and the role of the intermediary is extended successfully to accommodate this factor. This leads to the conclusion that for the DSS to play a fully effective role, small firms may need to introduce more structure into their marketing planning, and that the role of the intermediary, or Information Coordinator, should include the responsibility for introducing new techniques and ideas to aid with this.
Resumo:
OBJECTIVES: The objective of this research was to design a clinical decision support system (CDSS) that supports heterogeneous clinical decision problems and runs on multiple computing platforms. Meeting this objective required a novel design to create an extendable and easy to maintain clinical CDSS for point of care support. The proposed solution was evaluated in a proof of concept implementation. METHODS: Based on our earlier research with the design of a mobile CDSS for emergency triage we used ontology-driven design to represent essential components of a CDSS. Models of clinical decision problems were derived from the ontology and they were processed into executable applications during runtime. This allowed scaling applications' functionality to the capabilities of computing platforms. A prototype of the system was implemented using the extended client-server architecture and Web services to distribute the functions of the system and to make it operational in limited connectivity conditions. RESULTS: The proposed design provided a common framework that facilitated development of diversified clinical applications running seamlessly on a variety of computing platforms. It was prototyped for two clinical decision problems and settings (triage of acute pain in the emergency department and postoperative management of radical prostatectomy on the hospital ward) and implemented on two computing platforms-desktop and handheld computers. CONCLUSIONS: The requirement of the CDSS heterogeneity was satisfied with ontology-driven design. Processing of application models described with the help of ontological models allowed having a complex system running on multiple computing platforms with different capabilities. Finally, separation of models and runtime components contributed to improved extensibility and maintainability of the system.
Resumo:
Spare parts warehousing decision-making plays an important role in today's manufacturing industry as it derives an optimum inventory policy for the organizations. Previous research on spare parts warehousing decision-making did not deal with the problem holistically considering all the subjective and objective criteria of operational and strategic needs of the manufacturing companies in the process industry. This study reviews current relevant literature and develops a conceptual framework (an integrated group decision support system) for selecting the most effective warehousing option for the process industry using the analytic hierarchy process (AHP). The framework has been applied to a multinational cement manufacturing company in the UK. Three site visits, eight formal interviews, and several discussions have been undertaken with personnel of the organization, many of which have more than 20 years of experience, in order to apply the proposed decision support system (DSS). Subsequently, the DSS has been validated through a questionnaire survey in order to establish its usefulness, effectiveness for warehousing decision-making, and the possibility of adoption. The proposed DSS is an integrated framework for selecting the best warehousing option for business excellence in any manufacturing organization.
Resumo:
Biomass is projected to account for approximately half of the new energy production required to achieve the 2020 primary energy target in the UK. Combined heat and power (CHP) bioenergy systems are not only a highly efficient method of energy conversion, at smaller-scales a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost incumbent; a high carbon centralised energy system. Unidentified or unmitigated barriers occurring during the project lifecycle may not only negatively impact on the project but could ultimately lead to project failure. The research develops a decision support system (DSS) for small-scale (500 kWe to 10 MWe) biomass combustion CHP project development and risk management in the early stages of a potential project’s lifecycle. By supporting developers in the early stages of project development with financial, scheduling and risk management analysis, the research aims to reduce the barriers identified and streamline decision-making. A fuzzy methodology is also applied throughout the developed DSS to support developers in handling the uncertain or approximate information often held at the early stages of the project lifecycle. The DSS is applied to a case study of a recently failed (2011) small-scale biomass CHP project to demonstrate its applicability and benefits. The application highlights that the proposed development within the case study was not viable. Moreover, further analysis of the possible barriers with the DSS confirmed that some possible modifications to be project could have improved this, such as a possible change of feedstock to a waste or residue, addressing the unnecessary land lease cost or by increasing heat utilisation onsite. This analysis is further supported by a practitioner evaluation survey that confirms the research contribution and objectives are achieved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The purpose of this research is to explore the disparity between the existing model-orientated bioenergy decision support system (DSS) functions and what is desired by practitioners, in particular bioenergy project developers. This research has compiled the published bioenergy project development models, to highlight the characteristics emphasised by academics. When contrasted against a UK practitioner’s perspective through the administration of a Likert style questionnaire, it is clear that the general DSS issues still persist. Finally, the research suggests how this ’theory-practice’ divide could be addressed. The research contribute
Resumo:
Hospitals everywhere are integrating health data using electronic health record (EHR) systems, and disparate and multimedia patient data can be input by different caregivers at different locations as encapsulated patient profiles. Healthcare institutions are also using the flexibility and speed of wireless computing to improve quality and reduce costs. We are developing a mobile application that allows doctors to efficiently record and access complete and accurate real-time patient information. The system integrates medical imagery with textual patient profiles as well as expert interactions by healthcare personnel using knowledge management and case-based reasoning techniques. The application can assist other caregivers in searching large repositories of previous patient cases. Patients' symptoms can be input to a portable device and the application can quickly retrieve similar profiles which can be used to support effective diagnoses and prognoses by comparing symptoms, treatments, diagnosis, test results and other patient information. © 2007 Sage Publications.
Resumo:
Effective clinical decision making depends upon identifying possible outcomes for a patient, selecting relevant cues, and processing the cues to arrive at accurate judgements of each outcome's probability of occurrence. These activities can be considered as classification tasks. This paper describes a new model of psychological classification that explains how people use cues to determine class or outcome likelihoods. It proposes that clinicians respond to conditional probabilities of outcomes given cues and that these probabilities compete with each other for influence on classification. The model explains why people appear to respond to base rates inappropriately, thereby overestimating the occurrence of rare categories, and a clinical example is provided for predicting suicide risk. The model makes an effective representation for expert clinical judgements and its psychological validity enables it to generate explanations in a form that is comprehensible to clinicians. It is a strong candidate for incorporation within a decision support system for mental-health risk assessment, where it can link with statistical and pattern recognition tools applied to a database of patients. The symbiotic combination of empirical evidence and clinical expertise can provide an important web-based resource for risk assessment, including multi-disciplinary education and training. © 2002 Informa UK Ltd All rights reserved.
Resumo:
Presents information on a study which proposed a decision support system (DSS) for a petroleum pipeline route selection with the application of analytical hierarchy process. Factors governing route-selection for cross-country petroleum pipelines; Application of the DSS from an Indian perspective; Cost benefit comparison of the shortest route and the optimal route; Results and findings.
Resumo:
Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.
Resumo:
Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.
Resumo:
Vendor-managed inventory (VMI) is a widely used collaborative inventory management policy in which manufacturers manages the inventory of retailers and takes responsibility for making decisions related to the timing and extent of inventory replenishment. VMI partnerships help organisations to reduce demand variability, inventory holding and distribution costs. This study provides empirical evidence that significant economic benefits can be achieved with the use of a genetic algorithm (GA)-based decision support system (DSS) in a VMI supply chain. A two-stage serial supply chain in which retailers and their supplier are operating VMI in an uncertain demand environment is studied. Performance was measured in terms of cost, profit, stockouts and service levels. The results generated from GA-based model were compared to traditional alternatives. The study found that the GA-based approach outperformed traditional methods and its use can be economically justified in small- and medium-sized enterprises (SMEs).
Resumo:
This paper investigates neural network-based probabilistic decision support system to assess drivers' knowledge for the objective of developing a renewal policy of driving licences. The probabilistic model correlates drivers' demographic data to their results in a simulated written driving exam (SWDE). The probabilistic decision support system classifies drivers' into two groups of passing and failing a SWDE. Knowledge assessment of drivers within a probabilistic framework allows quantifying and incorporating uncertainty information into the decision-making system. The results obtained in a Jordanian case study indicate that the performance of the probabilistic decision support systems is more reliable than conventional deterministic decision support systems. Implications of the proposed probabilistic decision support systems on the renewing of the driving licences decision and the possibility of including extra assessment methods are discussed.