128 resultados para data envelopment analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performance evaluation in conventional data envelopment analysis (DEA) requires crisp numerical values. However, the observed values of the input and output data in real-world problems are often imprecise or vague. These imprecise and vague data can be represented by linguistic terms characterised by fuzzy numbers in DEA to reflect the decision-makers' intuition and subjective judgements. This paper extends the conventional DEA models to a fuzzy framework by proposing a new fuzzy additive DEA model for evaluating the efficiency of a set of decision-making units (DMUs) with fuzzy inputs and outputs. The contribution of this paper is threefold: (1) we consider ambiguous, uncertain and imprecise input and output data in DEA, (2) we propose a new fuzzy additive DEA model derived from the a-level approach and (3) we demonstrate the practical aspects of our model with two numerical examples and show its comparability with five different fuzzy DEA methods in the literature. Copyright © 2011 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. In this study, we provide a taxonomy and review of the fuzzy DEA methods. We present a classification scheme with four primary categories, namely, the tolerance approach, the a-level based approach, the fuzzy ranking approach and the possibility approach. We discuss each classification scheme and group the fuzzy DEA papers published in the literature over the past 20 years. To the best of our knowledge, this paper appears to be the only review and complete source of references on fuzzy DEA. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integer-valued data envelopment analysis (DEA) with alternative returns to scale technology has been introduced and developed recently by Kuosmanen and Kazemi Matin. The proportionality assumption of their introduced "natural augmentability" axiom in constant and nondecreasing returns to scale technologies makes it possible to achieve feasible decision-making units (DMUs) of arbitrary large size. In many real world applications it is not possible to achieve such production plans since some of the input and output variables are bounded above. In this paper, we extend the axiomatic foundation of integer-valuedDEAmodels for including bounded output variables. Some model variants are achieved by introducing a new axiom of "boundedness" over the selected output variables. A mixed integer linear programming (MILP) formulation is also introduced for computing efficiency scores in the associated production set. © 2011 The Authors. International Transactions in Operational Research © 2011 International Federation of Operational Research Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selecting the best alternative in a group decision making is a subject of many recent studies. The most popular method proposed for ranking the alternatives is based on the distance of each alternative to the ideal alternative. The ideal alternative may never exist; hence the ranking results are biased to the ideal point. The main aim in this study is to calculate a fuzzy ideal point that is more realistic to the crisp ideal point. On the other hand, recently Data Envelopment Analysis (DEA) is used to find the optimum weights for ranking the alternatives. This paper proposes a four stage approach based on DEA in the Fuzzy environment to aggregate preference rankings. An application of preferential voting system shows how the new model can be applied to rank a set of alternatives. Other two examples indicate the priority of the proposed method compared to the some other suggested methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intensity of global competition and ever-increasing economic uncertainties has led organizations to search for more efficient and effective ways to manage their business operations. Data envelopment analysis (DEA) has been widely used as a conceptually simple yet powerful tool for evaluating organizational productivity and performance. Fuzzy DEA (FDEA) is a promising extension of the conventional DEA proposed for dealing with imprecise and ambiguous data in performance measurement problems. This book is the first volume in the literature to present the state-of-the-art developments and applications of FDEA. It is designed for students, educators, researchers, consultants and practicing managers in business, industry, and government with a basic understanding of the DEA and fuzzy logic concepts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since its introduction in 1978, data envelopment analysis (DEA) has become one of the preeminent nonparametric methods for measuring efficiency and productivity of decision making units (DMUs). Charnes et al. (1978) provided the original DEA constant returns to scale (CRS) model, later extended to variable returns to scale (VRS) by Banker et al. (1984). These ‘standard’ models are known by the acronyms CCR and BCC, respectively, and are now employed routinely in areas that range from assessment of public sectors, such as hospitals and health care systems, schools, and universities, to private sectors, such as banks and financial institutions (Emrouznejad et al. 2008; Emrouznejad and De Witte 2010). The main objective of this volume is to publish original studies that are beyond the two standard CCR and BCC models with both theoretical and practical applications using advanced models in DEA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explains some drawbacks on previous approaches for detecting influential observations in deterministic nonparametric data envelopment analysis models as developed by Yang et al. (Annals of Operations Research 173:89-103, 2010). For example efficiency scores and relative entropies obtained in this model are unimportant to outlier detection and the empirical distribution of all estimated relative entropies is not a Monte-Carlo approximation. In this paper we developed a new method to detect whether a specific DMU is truly influential and a statistical test has been applied to determine the significance level. An application for measuring efficiency of hospitals is used to show the superiority of this method that leads to significant advancements in outlier detection. © 2014 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. This chapter provides a taxonomy and review of the fuzzy DEA (FDEA) methods. We present a classification scheme with six categories, namely, the tolerance approach, the α-level based approach, the fuzzy ranking approach, the possibility approach, the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy set. We discuss each classification scheme and group the FDEA papers published in the literature over the past 30 years. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grape is one of the world's largest fruit crops with approximately 67.5 million tonnes produced each year and energy is an important element in modern grape productions as it heavily depends on fossil and other energy resources. Efficient use of these energies is a necessary step toward reducing environmental hazards, preventing destruction of natural resources and ensuring agricultural sustainability. Hence, identifying excessive use of energy as well as reducing energy resources is the main focus of this paper to optimize energy consumption in grape production.In this study we use a two-stage methodology to find the association of energy efficiency and performance explained by farmers' specific characteristics. In the first stage a non-parametric Data Envelopment Analysis is used to model efficiencies as an explicit function of human labor, machinery, chemicals, FYM (farmyard manure), diesel fuel, electricity and water for irrigation energies. In the second step, farm specific variables such as farmers' age, gender, level of education and agricultural experience are used in a Tobit regression framework to explain how these factors influence efficiency of grape farming.The result of the first stage shows substantial inefficiency between the grape producers in the studied area while the second stage shows that the main difference between efficient and inefficient farmers was in the use of chemicals, diesel fuel and water for irrigation. The use of chemicals such as insecticides, herbicides and fungicides were considerably less than inefficient ones. The results revealed that the more educated farmers are more energy efficient in comparison with their less educated counterparts. © 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) has gained a wide range of applications in measuring comparative efficiency of decision making units (DMUs) with multiple incommensurate inputs and outputs. The standard DEA method requires that the status of all input and output variables be known exactly. However, in many real applications, the status of some measures is not clearly known as inputs or outputs. These measures are referred to as flexible measures. This paper proposes a flexible slacks-based measure (FSBM) of efficiency in which each flexible measure can play input role for some DMUs and output role for others to maximize the relative efficiency of the DMU under evaluation. Further, we will show that when an operational unit is efficient in a specific flexible measure, this measure can play both input and output roles for this unit. In this case, the optimal input/output designation for flexible measure is one that optimizes the efficiency of the artificial average unit. An application in assessing UK higher education institutions used to show the applicability of the proposed approach. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter provides the theoretical foundation and background on Data Envelopment Analysis (DEA) method and some variants of basic DEA models and applications to various sectors. Some illustrative examples, helpful resources on DEA, including DEA software package, are also presented in this chapter. DEA is useful for measuring relative efficiency for variety of institutions and has its own merits and limitations. This chapter concludes that DEA results should be interpreted with much caution to avoid giving wrong signals and providing inappropriate recommendations.