33 resultados para damping dynamic mechanical analysis DMA CFRP electrospinning tan(delta)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis illustrates the development of tailor-made, partially hydrated skin adhesive hydrogels as a vehicle for the topical delivery of moisturising agents. Maintaining an optimum hydration level of the stratum corneum ensures that the barrier properties of the skin are preserved. An unsaturated ionic monomer 2-acrylamido-2-methylpropanesulfonic acid sodium salt, glycerol, water, a photoinitiator Irgacure 184 and crosslinker Ebacryl II facilitated the production of monophasic sheet skin adhesives using photopolymerisation. The exploration and modification of the hydrogel components coupled with their influence on the adhesive and dynamic mechanical behaviour led to the development of novel monophasic and biphasic hydrogels. Biphasic pregels comprising of a hydrophobic monomer (epoxidised soybean oil acrylate, lauryl acrylate or stearyl acrylate) micellised with a non ionic surfactant Tween 60 allowed a homogeneous distribution throughout a predominantly hydrophilic phase (2-acrylamido-2-methylpropanesulfonic acid sodium salt, 4-acryloylmorpholine, glycerol and water). Further development of biphasic hydrogel technology led to the incorporation of preformed commercial O/W emulsions (Acronal, Flexbond 150, DM137 or Texicryl 13056WB) allowing the hydrophobic component to be added without prior stabilisation. The topical release of moisturising agents 2-pyrrolidone-5-carboxylic acid, lactobionic acid and d-calcium pantothenate results in the deposition onto the skin by an initial burst mechanism. The hydration level of the stratum corneum was measured using a Comeometer CM 825, Skin Reader MY810 or FT-ATR. The use of hydrophilic actives in conjunction with lipophilic agents for example Vitamin E or Jojoba oil provided an occlusive barrier, which reduced the rate of transepidermal water loss. The partition coefficients of the release agents provided invaluable information which enabled the appropriate gel technology to be selected. In summary the synthetic studies led to the understanding and generation of transferable technology. This enabled the synthesis of novel vehicles allowing an array of actives with a range of solubilities to be incorporated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research presented in this thesis was developed as part of DIBANET, an EC funded project aiming to develop an energetically self-sustainable process for the production of diesel miscible biofuels (i.e. ethyl levulinate) via acid hydrolysis of selected biomass feedstocks. Three thermal conversion technologies, pyrolysis, gasification and combustion, were evaluated in the present work with the aim of recovering the energy stored in the acid hydrolysis solid residue (AHR). Mainly consisting of lignin and humins, the AHR can contain up to 80% of the energy in the original feedstock. Pyrolysis of AHR proved unsatisfactory, so attention focussed on gasification and combustion with the aim of producing heat and/or power to supply the energy demanded by the ethyl levulinate production process. A thermal processing rig consisting on a Laminar Entrained Flow Reactor (LEFR) equipped with solid and liquid collection and online gas analysis systems was designed and built to explore pyrolysis, gasification and air-blown combustion of AHR. Maximum liquid yield for pyrolysis of AHR was 30wt% with volatile conversion of 80%. Gas yield for AHR gasification was 78wt%, with 8wt% tar yields and conversion of volatiles close to 100%. 90wt% of the AHR was transformed into gas by combustion, with volatile conversions above 90%. 5volO2%-95vol%N2 gasification resulted in a nitrogen diluted, low heating value gas (2MJ/m3). Steam and oxygen-blown gasification of AHR were additionally investigated in a batch gasifier at KTH in Sweden. Steam promoted the formation of hydrogen (25vol%) and methane (14vol%) improving the gas heating value to 10MJ/m3, below the typical for steam gasification due to equipment limitations. Arrhenius kinetic parameters were calculated using data collected with the LEFR to provide reaction rate information for process design and optimisation. Activation energy (EA) and pre-exponential factor (ko in s-1) for pyrolysis (EA=80kJ/mol, lnko=14), gasification (EA=69kJ/mol, lnko=13) and combustion (EA=42kJ/mol, lnko=8) were calculated after linearly fitting the data using the random pore model. Kinetic parameters for pyrolysis and combustion were also determined by dynamic thermogravimetric analysis (TGA), including studies of the original biomass feedstocks for comparison. Results obtained by differential and integral isoconversional methods for activation energy determination were compared. Activation energy calculated by the Vyazovkin method was 103-204kJ/mol for pyrolysis of untreated feedstocks and 185-387kJ/mol for AHRs. Combustion activation energy was 138-163kJ/mol for biomass and 119-158 for AHRs. The non-linear least squares method was used to determine reaction model and pre-exponential factor. Pyrolysis and combustion of biomass were best modelled by a combination of third order reaction and 3 dimensional diffusion models, while AHR decomposed following the third order reaction for pyrolysis and the 3 dimensional diffusion for combustion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field material testing provides firsthand information on pavement conditions which are most helpful in evaluating performance and identifying preventive maintenance or overlay strategies. High variability of field asphalt concrete due to construction raises the demand for accuracy of the test. Accordingly, the objective of this study is to propose a reliable and repeatable methodology to evaluate the fracture properties of field-aged asphalt concrete using the overlay test (OT). The OT is selected because of its efficiency and feasibility for asphalt field cores with diverse dimensions. The fracture properties refer to the Paris’ law parameters based on the pseudo J-integral (A and n) because of the sound physical significance of the pseudo J-integral with respect to characterizing the cracking process. In order to determine A and n, a two-step OT protocol is designed to characterize the undamaged and damaged behaviors of asphalt field cores. To ensure the accuracy of determined undamaged and fracture properties, a new analysis method is then developed for data processing, which combines the finite element simulations and mechanical analysis of viscoelastic force equilibrium and evolution of pseudo displacement work in the OT specimen. Finally, theoretical equations are derived to calculate A and n directly from the OT test data. The accuracy of the determined fracture properties is verified. The proposed methodology is applied to a total of 27 asphalt field cores obtained from a field project in Texas, including the control Hot Mix Asphalt (HMA) and two types of warm mix asphalt (WMA). The results demonstrate a high linear correlation between n and −log A for all the tested field cores. Investigations of the effect of field aging on the fracture properties confirm that n is a good indicator to quantify the cracking resistance of asphalt concrete. It is also indicated that summer climatic condition clearly accelerates the rate of aging. The impact of the WMA technologies on fracture properties of asphalt concrete is visualized by comparing the n-values. It shows that the Evotherm WMA technology slightly improves the cracking resistance, while the foaming WMA technology provides the comparable fracture properties with the HMA. After 15 months aging in the field, the cracking resistance does not exhibit significant difference between HMA and WMAs, which is confirmed by the observations of field distresses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study developed a reliable and repeatable methodology to evaluate the fracture properties of asphalt mixtures with an overlay test (OT). In the proposed methodology, first, a two-step OT protocol was used to characterize the undamaged and damaged behaviors of asphalt mixtures. Second, a new methodology combining the mechanical analysis of viscoelastic force equilibrium in the OT specimen and finite element simulations was used to determine the undamaged properties and crack growth function of asphalt mixtures. Third, a modified Paris's law replacing the stress intensity factor by the pseudo J-integral was employed to characterize the fracture behavior of asphalt mixtures. Theoretical equations were derived to calculate the parameters A and n (defined as the fracture properties) in the modified Paris's law. The study used a detailed example to calculate A and n from the OT data. The proposed methodology was successfully applied to evaluate the impact of warm-mix asphalt (WMA) technologies on fracture properties. The results of the tested specimens showed that Evotherm WMA technology slightly improved the cracking resistance of asphalt mixtures, while foaming WMA technology provided comparable fracture properties. In addition, the study found that A decreased with the increase in n in general. A linear relationship between 2log(A) and n was established.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This thesis demonstrates that the use of finite elements need not be confined to space alone, but that they may also be used in the time domain, It is shown that finite element methods may be used successfully to obtain the response of systems to applied forces, including, for example, the accelerations in a tall structure subjected to an earthquake shock. It is further demonstrated that at least one of these methods may be considered to be a practical alternative to more usual methods of solution. A detailed investigation of the accuracy and stability of finite element solutions is included, and methods of applications to both single- and multi-degree of freedom systems are described. Solutions using two different temporal finite elements are compared with those obtained by conventional methods, and a comparison of computation times for the different methods is given. The application of finite element methods to distributed systems is described, using both separate discretizations in space and time, and a combined space-time discretization. The inclusion of both viscous and hysteretic damping is shown to add little to the difficulty of the solution. Temporal finite elements are also seen to be of considerable interest when applied to non-linear systems, both when the system parameters are time-dependent and also when they are functions of displacement. Solutions are given for many different examples, and the computer programs used for the finite element methods are included in an Appendix.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This thesis covers both experimental and computer investigations into the dynamic behaviour of mechanical seals. The literature survey shows no investigations on the effect of vibration on mechanical seals of the type common in the various process industries. Typical seal designs are discussed. A form of Reynolds' equation has been developed that permits the calculation of stiffnesses and damping coefficients for the fluid film. The dynamics of the mechanical seal floating ring have been investigated using approximate formulae, and it has been shown that the floating ring will behave as a rigid body. Some elements, such as the radial damping due to the fluid film, are small and may be neglected. The equations of motion of the floating ring have been developed utilising the significant elements, and a solution technique described. The stiffness and damping coefficients of nitrile rubber o-rings have been obtained. These show a wide variation, with a constant stiffness up to 60 Hz. The importance of the effect of temperature on the properties is discussed. An unsuccessful test rig is described in the appendices. The dynamic behaviour of a mechanical seal has been investigated experimentally, including the effect of changes of speed, sealed pressure and seal geometry. The results, as expected, show that high vibration levels result in both high leakage and seal temperatures. Computer programs have been developed to solve Reynolds' Equation and the equations of motion. Two solution techniques for this latter program were developed, the unsuccesful technique is described in the appendices. Some stability problems were encountered, but despite these the solution shows good agreement with some of the experimental conditions. Possible reasons for the discrepancies are discussed. Various suggestions for future work in this field are given. These include the combining of the programs and more extensive experimental and computer modelling.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A hybrid passive-active damping solution with improved system stability margin and enhanced dynamic performance is proposed for high power grid interactive converters. In grid connected active rectifier/inverter application, line side LCL filter improves the high frequency attenuation and makes the converter compatible with the stringent grid power quality regulations. Passive damping though offers a simple and reliable solution but it reduces overall converter efficiency. Active damping solutions do not increase the system losses but can guarantee the stable operation up to a certain speed of dynamic response which is limited by the maximum bandwidth of the current controller. This paper examines this limit and introduces a concept of hybrid passive-active damping solution with improved stability margin and high dynamic performance for line side LCL filter based active rectifier/inverter applications. A detailed design, analysis of the hybrid approach and trade-off between system losses and dynamic performance in grid connected applications are reported. Simulation and experimental results from a 10 kVA prototype demonstrate the effectiveness of the proposed solution. An analytical study on system stability and dynamic response with the variations of various controller and passive filter parameters is presented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate- fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and noslip conditions. Analytical expression for the fluidloading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers beingmass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Very little is known about the neural structures involved in the perception of realistic dynamic facial expressions. In the present study, a unique set of naturalistic dynamic facial emotional expressions was created. Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend Haxby et al.'s [Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. The distributed human neural system for face perception. Trends in Cognitive Science, 4, 223–233, 2000] distributed neural system for face perception. This network includes early visual regions, such as the inferior occipital gyrus, which is identified as insensitive to motion or affect but sensitive to the visual stimulus, the STS, identified as specifically sensitive to motion, and the amygdala, recruited to process affect. Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as the inferior occipital gyrus and the STS, along with coupling between the STS and the amygdala, as well as the inferior frontal gyrus. These findings support the presence of a distributed network of cortical regions that mediate the perception of different dynamic facial expressions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose a data envelopment analysis (DEA) based method for assessing the comparative efficiencies of units operating production processes where input-output levels are inter-temporally dependent. One cause of inter-temporal dependence between input and output levels is capital stock which influences output levels over many production periods. Such units cannot be assessed by traditional or 'static' DEA which assumes input-output correspondences are contemporaneous in the sense that the output levels observed in a time period are the product solely of the input levels observed during that same period. The method developed in the paper overcomes the problem of inter-temporal input-output dependence by using input-output 'paths' mapped out by operating units over time as the basis of assessing them. As an application we compare the results of the dynamic and static model for a set of UK universities. The paper is suggested that dynamic model capture the efficiency better than static model. © 2003 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent functional magnetic resonance imaging (fMRI) investigations of the interaction between cognition and reward processing have found that the lateral prefrontal cortex (PFC) areas are preferentially activated to both increasing cognitive demand and reward level. Conversely, ventromedial PFC (VMPFC) areas show decreased activation to the same conditions, indicating a possible reciprocal relationship between cognitive and emotional processing regions. We report an fMRI study of a rewarded working memory task, in which we further explore how the relationship between reward and cognitive processing is mediated. We not only assess the integrity of reciprocal neural connections between the lateral PFC and VMPFC brain regions in different experimental contexts but also test whether additional cortical and subcortical regions influence this relationship. Psychophysiological interaction analyses were used as a measure of functional connectivity in order to characterize the influence of both cognitive and motivational variables on connectivity between the lateral PFC and the VMPFC. Psychophysiological interactions revealed negative functional connectivity between the lateral PFC and the VMPFC in the context of high memory load, and high memory load in tandem with a highly motivating context, but not in the context of reward alone. Physiophysiological interactions further indicated that the dorsal anterior cingulate and the caudate nucleus modulate this pathway. These findings provide evidence for a dynamic interplay between lateral PFC and VMPFC regions and are consistent with an emotional gating role for the VMPFC during cognitively demanding tasks. Our findings also support neuropsychological theories of mood disorders, which have long emphasized a dysfunctional relationship between emotion/motivational and cognitive processes in depression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rapid developments in computer technology have resulted in a widespread use of discrete event dynamic systems (DEDSs). This type of system is complex because it exhibits properties such as concurrency, conflict and non-determinism. It is therefore important to model and analyse such systems before implementation to ensure safe, deadlock free and optimal operation. This thesis investigates current modelling techniques and describes Petri net theory in more detail. It reviews top down, bottom up and hybrid Petri net synthesis techniques that are used to model large systems and introduces on object oriented methodology to enable modelling of larger and more complex systems. Designs obtained by this methodology are modular, easy to understand and allow re-use of designs. Control is the next logical step in the design process. This thesis reviews recent developments in control DEDSs and investigates the use of Petri nets in the design of supervisory controllers. The scheduling of exclusive use of resources is investigated and an efficient Petri net based scheduling algorithm is designed and a re-configurable controller is proposed. To enable the analysis and control of large and complex DEDSs, an object oriented C++ software tool kit was developed and used to implement a Petri net analysis tool, Petri net scheduling and control algorithms. Finally, the methodology was applied to two industrial DEDSs: a prototype can sorting machine developed by Eurotherm Controls Ltd., and a semiconductor testing plant belonging to SGS Thomson Microelectronics Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis describes an analytical and experimental study to determine the mechanical characteristics of the pump mounting, bell housing type. For numerical purposes, the mount was modelled as a thin circular cylindrical shell with cutouts, stiffened with rings and stringers; the boundary conditions were considered to be either clamped-free or clamped-supporting rigid heavy mass. The theoretical study was concerned with both the static response and the free vibration characteristics of the mount. The approach was based on the Rayleigh-Ritz approximation technique using beam characteristic (axial) and trigonometric (Circumferential) functions in the displacement series, in association with the Love - Timoshenko thin shell theory. Studies were carried out to determine the effect of the supported heavy mass on the static response, frequencies and mode shapes; in addition, the effects of stringers, rings and cutouts on vibration characteristics were investigated. The static and dynamic formulations were both implemented on the Hewlett Packard 9845 computer. The experimental study was conducted to evaluate the results of the natural frequencies and mode shapes, predicted numerically. In the experimental part, a digital computer was used as an experiment controller, which allowed accurate and quick results. The following observations were made: 1. Good agreements were obtained with the results of other investigators. 2. Satisfactory agreement was achieved between the theoretical and experimental results. 3. Rings coupled the axial modal functions of the plain cylinder and tended to increase frequencies, except for the torsion modes where frequencies were reduced. Stringers coupled the circumferential modal functions and tended to decrease frequencies. The effect of rings was stronger than that of stringers. 4. Cutouts tended to reduce frequencies; in general, but this depends on the location of the cutouts; if they are near the free edge then an increase in frequencies is obtained. Cutouts coupled both axial and circumferential modal functions. 5. The supported heavy mass had similar effects to those of the rings, but in an exaggerated manner, particularly in the reduction of torsion frequencies. 6. The method of analysis was found to be a convenient analytical tool for estimating the overall behaviour of the shell with cutouts.