19 resultados para cyber-bullying
Resumo:
Resource Space Model is a kind of data model which can effectively and flexibly manage the digital resources in cyber-physical system from multidimensional and hierarchical perspectives. This paper focuses on constructing resource space automatically. We propose a framework that organizes a set of digital resources according to different semantic dimensions combining human background knowledge in WordNet and Wikipedia. The construction process includes four steps: extracting candidate keywords, building semantic graphs, detecting semantic communities and generating resource space. An unsupervised statistical language topic model (i.e., Latent Dirichlet Allocation) is applied to extract candidate keywords of the facets. To better interpret meanings of the facets found by LDA, we map the keywords to Wikipedia concepts, calculate word relatedness using WordNet's noun synsets and construct corresponding semantic graphs. Moreover, semantic communities are identified by GN algorithm. After extracting candidate axes based on Wikipedia concept hierarchy, the final axes of resource space are sorted and picked out through three different ranking strategies. The experimental results demonstrate that the proposed framework can organize resources automatically and effectively.©2013 Published by Elsevier Ltd. All rights reserved.
Resumo:
People manage a spectrum of identities in cyber domains. Profiling individuals and assigning them to distinct groups or classes have potential applications in targeted services, online fraud detection, extensive social sorting, and cyber-security. This paper presents the Uncertainty of Identity Toolset, a framework for the identification and profiling of users from their social media accounts and e-mail addresses. More specifically, in this paper we discuss the design and implementation of two tools of the framework. The Twitter Geographic Profiler tool builds a map of the ethno-cultural communities of a person's friends on Twitter social media service. The E-mail Address Profiler tool identifies the probable identities of individuals from their e-mail addresses and maps their geographical distribution across the UK. To this end, this paper presents a framework for profiling the digital traces of individuals.
Resumo:
This chapter introduces Native Language Identification (NLID) and considers the casework applications with regard to authorship analysis of online material. It presents findings from research identifying which linguistic features were the best indicators of native (L1) Persian speakers blogging in English, and analyses how these features cope at distinguishing between native influences from languages that are linguistically and culturally related. The first chapter section outlines the area of Native Language Identification, and demonstrates its potential for application through a discussion of relevant case history. The next section discusses a development of methodology for identifying influence from L1 Persian in an anonymous blog author, and presents findings. The third part discusses the application of these features to casework situations as well as how the features identified can form an easily applicable model and demonstrates the application of this to casework. The research presented in this chapter can be considered a case study for the wider potential application of NLID.
Resumo:
The protection of cyberspace has become one of the highest security priorities of governments worldwide. The EU is not an exception in this context, given its rapidly developing cyber security policy. Since the 1990s, we could observe the creation of three broad areas of policy interest: cyber-crime, critical information infrastructures and cyber-defence. One of the main trends transversal to these areas is the importance that the private sector has come to assume within them. In particular in the area of critical information infrastructure protection, the private sector is seen as a key stakeholder, given that it currently operates most infrastructures in this area. As a result of this operative capacity, the private sector has come to be understood as the expert in network and information systems security, whose knowledge is crucial for the regulation of the field. Adopting a Regulatory Capitalism framework, complemented by insights from Network Governance, we can identify the shifting role of the private sector in this field from one of a victim in need of protection in the first phase, to a commercial actor bearing responsibility for ensuring network resilience in the second, to an active policy shaper in the third, participating in the regulation of NIS by providing technical expertise. By drawing insights from the above-mentioned frameworks, we can better understand how private actors are involved in shaping regulatory responses, as well as why they have been incorporated into these regulatory networks.