67 resultados para cortical magnification
Resumo:
Background & Aims: Current models of visceral pain processing derived from metabolic brain imaging techniques fail to differentiate between exogenous (stimulus-dependent) and endogenous (non-stimulus-specific) neural activity. The aim of this study was to determine the spatiotemporal correlates of exogenous neural activity evoked by painful esophageal stimulation. Methods: In 16 healthy subjects (8 men; mean age, 30.2 ± 2.2 years), we recorded magnetoencephalographic responses to 2 runs of 50 painful esophageal electrical stimuli originating from 8 brain subregions. Subsequently, 11 subjects (6 men; mean age, 31.2 ± 1.8 years) had esophageal cortical evoked potentials recorded on a separate occasion by using similar experimental parameters. Results: Earliest cortical activity (P1) was recorded in parallel in the primary/secondary somatosensory cortex and posterior insula (∼85 ms). Significantly later activity was seen in the anterior insula (∼103 ms) and cingulate cortex (∼106 ms; P = .0001). There was no difference between the P1 latency for magnetoencephalography and cortical evoked potential (P = .16); however, neural activity recorded with cortical evoked potential was longer than with magnetoencephalography (P = .001). No sex differences were seen for psychophysical or neurophysiological measures. Conclusions: This study shows that exogenous cortical neural activity evoked by experimental esophageal pain is processed simultaneously in somatosensory and posterior insula regions. Activity in the anterior insula and cingulate - brain regions that process the affective aspects of esophageal pain - occurs significantly later than in the somatosensory regions, and no sex differences were observed with this experimental paradigm. Cortical evoked potential reflects the summation of cortical activity from these brain regions and has sufficient temporal resolution to separate exogenous and endogenous neural activity. © 2005 by the American Gastroenterological Association.
Resumo:
Human swallowing represents a complex highly coordinated sensorimotor function whose functional neuroanatomy remains incompletely understood. Specifically, previous studies have failed to delineate the temporo-spatial sequence of those cerebral loci active during the differing phases of swallowing. We therefore sought to define the temporal characteristics of cortical activity associated with human swallowing behaviour using a novel application of magnetoencephalography (MEG). In healthy volunteers (n = 8, aged 28-45), 151-channel whole cortex MEG was recorded during the conditions of oral water infusion, volitional wet swallowing (5 ml bolus), tongue thrust or rest. Each condition lasted for 5 s and was repeated 20 times. Synthetic aperture magnetometry (SAM) analysis was performed on each active epoch and compared to rest. Temporal sequencing of brain activations utilised time-frequency wavelet plots of regions selected using virtual electrodes. Following SAM analysis, water infusion preferentially activated the caudolateral sensorimotor cortex, whereas during volitional swallowing and tongue movement, the superior sensorimotor cortex was more strongly active. Time-frequency wavelet analysis indicated that sensory input from the tongue simultaneously activated caudolateral sensorimotor and primary gustatory cortex, which appeared to prime the superior sensory and motor cortical areas, involved in the volitional phase of swallowing. Our data support the existence of a temporal synchrony across the whole cortical swallowing network, with sensory input from the tongue being critical. Thus, the ability to non-invasively image this network, with intra-individual and high temporal resolution, provides new insights into the brain processing of human swallowing. © 2004 Elsevier Inc. All rights reserved.
Resumo:
The rectum has a unique physiological role as a sensory organ and differs in its afferent innervation from other gut organs that do not normally mediate conscious sensation. We compared the central processing of human esophageal, duodenal, and rectal sensation using cortical evoked potentials (CEP) in 10 healthy volunteers (age range 21-34 yr). Esophageal and duodenal CEP had similar morphology in all subjects, whereas rectal CEP had two different but reproducible morphologies. The rectal CEP latency to the first component P1 (69 ms) was shorter than both duodenal (123 ms; P = 0.008) and esophageal CEP latencies (106 ms; P = 0.004). The duodenal CEP amplitude of the P1-N1 component (5.0 µV) was smaller than that of the corresponding esophageal component (5.7 µV; P = 0.04) but similar to that of the corresponding rectal component (6.5 µV; P = 0.25). This suggests that rectal sensation is either mediated by faster-conducting afferent pathways or that there is a difference in the orientation or volume of cortical neurons representing the different gut organs. In conclusion, the physiological and anatomic differences between gut organs are reflected in differences in the characteristics of their afferent pathways and cortical processing.
Resumo:
Background/Aims: Positron emission tomography has been applied to study cortical activation during human swallowing, but employs radio-isotopes precluding repeated experiments and has to be performed supine, making the task of swallowing difficult. Here we now describe Synthetic Aperture Magnetometry (SAM) as a novel method of localising and imaging the brain's neuronal activity from magnetoencephalographic (MEG) signals to study the cortical processing of human volitional swallowing in the more physiological prone position. Methods: In 3 healthy male volunteers (age 28–36), 151-channel whole cortex MEG (Omega-151, CTF Systems Inc.) was recorded whilst seated during the conditions of repeated volitional wet swallowing (5mls boluses at 0.2Hz) or rest. SAM analysis was then performed using varying spatial filters (5–60Hz) before co-registration with individual MRI brain images. Activation areas were then identified using standard sterotactic space neuro-anatomical maps. In one subject repeat studies were performed to confirm the initial study findings. Results: In all subjects, cortical activation maps for swallowing could be generated using SAM, the strongest activations being seen with 10–20Hz filter settings. The main cortical activations associated with swallowing were in: sensorimotor cortex (BA 3,4), insular cortex and lateral premotor cortex (BA 6,8). Of relevance, each cortical region displayed consistent inter-hemispheric asymmetry, to one or other hemisphere, this being different for each region and for each subject. Intra-subject comparisons of activation localisation and asymmetry showed impressive reproducibility. Conclusion: SAM analysis using MEG is an accurate, repeatable, and reproducible method for studying the brain processing of human swallowing in a more physiological manner and provides novel opportunities for future studies of the brain-gut axis in health and disease.
Resumo:
Recent studies of areas V1 and MT in the visual cortex show that exposure to a stimulus can change the contrast sensitivity of cells and shift their peak sensitivity to a new orientation or movement direction. In MT, these shifts can correctly predict illusory changes - visual aftereffects - in movement direction, but in V1, they are more difficult to interpret.
Resumo:
The roots of the concept of cortical columns stretch far back into the history of neuroscience. The impulse to compartmentalise the cortex into functional units can be seen at work in the phrenology of the beginning of the nineteenth century. At the beginning of the next century Korbinian Brodmann and several others published treatises on cortical architectonics. Later, in the middle of that century, Lorente de No writes of chains of ‘reverberatory’ neurons orthogonal to the pial surface of the cortex and called them ‘elementary units of cortical activity’. This is the first hint that a columnar organisation might exist. With the advent of microelectrode recording first Vernon Mountcastle (1957) and then David Hubel and Torsten Wiesel provided evidence consistent with the idea that columns might constitute units of physiological activity. This idea was backed up in the 1970s by clever histochemical techniques and culminated in Hubel and Wiesel’s well-known ‘ice-cube’ model of the cortex and Szentogathai’s brilliant iconography. The cortical column can thus be seen as the terminus ad quem of several great lines of neuroscientific research: currents originating in phrenology and passing through cytoarchitectonics; currents originating in neurocytology and passing through Lorente de No. Famously, Huxley noted the tragedy of a beautiful hypothesis destroyed by an ugly fact. Famously, too, human visual perception is orientated toward seeing edges and demarcations when, perhaps, they are not there. Recently the concept of cortical columns has come in for the same radical criticism that undermined the architectonics of the early part of the twentieth century. Does history repeat itself? This paper reviews this history and asks the question.
Resumo:
We contend that powerful group studies can be conducted using magnetoencephalography (MEG), which can provide useful insights into the approximate distribution of the neural activity detected with MEG without requiring magnetic resonance imaging (MRI) for each participant. Instead, a participant's MRI is approximated with one chosen as a best match on the basis of the scalp surface from a database of available MRIs. Because large inter-individual variability in sulcal and gyral patterns is an inherent source of blurring in studies using grouped functional activity, the additional error introduced by this approximation procedure has little effect on the group results, and offers a sufficiently close approximation to that of the participants to yield a good indication of the true distribution of the grouped neural activity. T1-weighted MRIs of 28 adults were acquired in a variety of MR systems. An artificial functional image was prepared for each person in which eight 5 × 5 × 5 mm regions of brain activation were simulated. Spatial normalisation was applied to each image using transformations calculated using SPM99 with (1) the participant's actual MRI, and (2) the best matched MRI substituted from those of the other 27 participants. The distribution of distances between the locations of points using real and substituted MRIs had a modal value of 6 mm with 90% of cases falling below 12.5 mm. The effects of this -approach on real grouped SAM source imaging of MEG data in a verbal fluency task are also shown. The distribution of MEG activity in the estimated average response is very similar to that produced when using the real MRIs. © 2003 Wiley-Liss, Inc.
Resumo:
Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of "disrupted in schizophrenia 1" (DISC1)-a molecule implicated in psychiatric disorders-resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence.
Resumo:
Aim: To determine the best method of estimating the optimum magnification needed by visually impaired patients. Methods: The magnification of low vision aids prescribed to 187 presbyopic visually impaired patients for reading newspapers or books was compared with logMAR distance and near acuity (at 25 cm) and magnification predicted by +4 D step near additions. Results: Distance letter (r = 0.58) and near word visual acuity (r = 0.67) were strongly correlated to the prescribed magnification as were predictive formulae based on these measures. Prediction using the effect of proximal magnification resulted in a similar correlation (r = 0.67) and prediction was poorer in those who did not benefit from proximal magnification. The difference between prescribed and predicted magnification was found to be unrelated to the condition causing visual impairment (F = 2.57, p = 0.08), the central visual field status (F = 0.57, p = 0.57) and patient psychology (F = 0.44, p = 0.51), but was higher in those prescribed stand magnifiers than high near additions (F = 5.99, p < 0.01). Conclusions: The magnification necessary to perform normal visual tasks can be predicted in the majority of cases using visual acuity measures, although measuring the effect of proximal magnification demonstrates the effect of stronger glasses and identifies those in whom prescribed magnification is more difficult to predict.
Resumo:
Clustering of ballooned neurons (BN) and tau positive neurons with inclusion bodies (tau+ neurons) was studied in the upper and lower laminae of the frontal, parietal and temporal cortex in 12 patients with corticobasal degeneration (CBD). In a significant proportion of brain areas examined, BN and tau+ neurons exhibited clustering with a regular distribution of clusters parallel to the pia mater. A regular pattern of clustering of BN and tau+ neurons was observed equally frequently in all cortical areas examined and in the upper and lower laminae. No significant correlations were observed between the cluster sizes of BN or tau+ neurons in the upper compared with the lower cortex or between the cluster sizes of BN and tau+ neurons. The results suggest that BN and tau+ neurons in CBD exhibit the same type of spatial pattern as lesions in Alzheimer's disease, Lewy body dementia and Pick's disease. The regular periodicity of the cerebral cortical lesions is consistent with the degeneration of the cortico-cortical projections in CBD.