30 resultados para confounding variable


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formative measurement has seen increasing acceptance in organizational research since the turn of the 21st Century. However, in more recent times, a number of criticisms of the formative approach have appeared. Such work argues that formatively-measured constructs are empirically ambiguous and thus flawed in a theory-testing context. The aim of the present paper is to examine the underpinnings of formative measurement theory in light of theories of causality and ontology in measurement in general. In doing so, a thesis is advanced which draws a distinction between reflective, formative, and causal theories of latent variables. This distinction is shown to be advantageous in that it clarifies the ontological status of each type of latent variable, and thus provides advice on appropriate conceptualization and application. The distinction also reconciles in part both recent supportive and critical perspectives on formative measurement. In light of this, advice is given on how most appropriately to model formative composites in theory-testing applications, placing the onus on the researcher to make clear their conceptualization and operationalisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a Data Envelopment Analysis model, some of the weights used to compute the efficiency of a unit can have zero or negligible value despite of the importance of the corresponding input or output. This paper offers an approach to preventing inputs and outputs from being ignored in the DEA assessment under the multiple input and output VRS environment, building on an approach introduced in Allen and Thanassoulis (2004) for single input multiple output CRS cases. The proposed method is based on the idea of introducing unobserved DMUs created by adjusting input and output levels of certain observed relatively efficient DMUs, in a manner which reflects a combination of technical information and the decision maker's value judgements. In contrast to many alternative techniques used to constrain weights and/or improve envelopment in DEA, this approach allows one to impose local information on production trade-offs, which are in line with the general VRS technology. The suggested procedure is illustrated using real data. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate a mixed problem with variable lateral conditions for the heat equation that arises in modelling exocytosis, i.e. the opening of a cell boundary in specific biological species for the release of certain molecules to the exterior of the cell. The Dirichlet condition is imposed on a surface patch of the boundary and this patch is occupying a larger part of the boundary as time increases modelling where the cell is opening (the fusion pore), and on the remaining part, a zero Neumann condition is imposed (no molecules can cross this boundary). Uniform concentration is assumed at the initial time. We introduce a weak formulation of this problem and show that there is a unique weak solution. Moreover, we give an asymptotic expansion for the behaviour of the solution near the opening point and for small values in time. We also give an integral equation for the numerical construction of the leading term in this expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projection of a high-dimensional dataset onto a two-dimensional space is a useful tool to visualise structures and relationships in the dataset. However, a single two-dimensional visualisation may not display all the intrinsic structure. Therefore, hierarchical/multi-level visualisation methods have been used to extract more detailed understanding of the data. Here we propose a multi-level Gaussian process latent variable model (MLGPLVM). MLGPLVM works by segmenting data (with e.g. K-means, Gaussian mixture model or interactive clustering) in the visualisation space and then fitting a visualisation model to each subset. To measure the quality of multi-level visualisation (with respect to parent and child models), metrics such as trustworthiness, continuity, mean relative rank errors, visualisation distance distortion and the negative log-likelihood per point are used. We evaluate the MLGPLVM approach on the ‘Oil Flow’ dataset and a dataset of protein electrostatic potentials for the ‘Major Histocompatibility Complex (MHC) class I’ of humans. In both cases, visual observation and the quantitative quality measures have shown better visualisation at lower levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. The X-linked MAOA gene is characterized by an allelic variant of length, the MAOA upstream Variable Number Tandem Repeat (MAOA-uVNTR) region polymorphism. Two allelic variants of this gene are known, the high-activity MAOA (HAM) and low-activity MAOA (LAM). We investigated the role of MAOA-uVNTR in cortical pain processing in a group of healthy individuals measured by the trigeminal electric pain-related evoked potential (tPREP) elicited by repeated painful stimulation. A group of healthy volunteers was genotyped to detect MAOA-uVNTR polymorphism. Electrical tPREPs were recorded by stimulating the right supraorbital nerve with a concentric electrode. The N2 and P2 component amplitude and latency as well as the N2-P2 inter-peak amplitude were measured. The recording was divided into three blocks, each containing 10 consecutive stimuli and the N2-P2 amplitude was compared between blocks. Of the 67 volunteers, 37 were HAM and 30 were LAM. HAM subjects differed from LAM subjects in terms of amplitude of the grand-averaged and first-block N2-P2 responses (HAM>LAM). The N2-P2 amplitude decreased between the first and third block in HAM subjects but not LAM subjects. The MAOA-uVNTR polymorphism seemed to influence the brain response in a repeated tPREP paradigm and suggested a role of the MAOA as a modulator of neural plasticity related to cortical pain processing. Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of informal institutions and in particular culture for entrepreneurship is a subject of ongoing interest. Past research has mostly concentrated on cross-national comparisons, cultural values, and the direct effects of culture on entrepreneurial behavior, but in the main found inconsistent results. The present research adds a fresh perspective to this research stream by turning attention to community-level culture and cultural norms. We hypothesize indirect effects of cultural norms on venture emergence. Specifically that community-level cultural norms (performance-based culture and socially-supportive institutional norms) impact important supply-side variables (entrepreneurial self-efficacy and entrepreneurial motivation) which in turn influence nascent entrepreneurs’ success in creating operational ventures (venture emergence). We test our predictions on a unique longitudinal data set (PSED II) tracking nascent entrepreneurs venture creation efforts over a 5 year time span and find evidence supporting them. Our research contributes to a more fine-grained understanding of how culture, in particular perceptions of community cultural norms, influences venture emergence. This research highlights the embeddedness of entrepreneurial behavior and its immediate antecedent beliefs in the local, community context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS, ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the GN-model to assess Nyquist-WDM 100/200Gbit/s PM-QPSK/16QAM signal reach on low loss, large core area fibre using extended range, variable gain hybrid Raman-EDFAs. 5000/1500km transmission is possible over a wide range of amplifier spans. © OSA 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Raman converter based on an active fiber with variable mode structure is experimentally and theoretically studied. It is demonstrated that a conventional telecommunication fiber with variable mode structure can be used to construct Raman converters © Pleiades Publishing, Ltd., 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research focuses on automatically adapting a search engine size in response to fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine. Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate its load and, when appropriate, switch over to a dierent number of active processors. We focus on three aspects and break them out into three sub-problems as follows: Continually determining the Number of Processors (CNP), New Grouping Problem (NGP) and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the query workload in the search engine) there is a problem of determining the ideal number of processors p active at any given time to use in the search engine and we call this problem CNP. NGP happens when changes in the number of processors are determined and it must also be determined which groups of search data will be distributed across the processors. ROP is how to redistribute this data onto processors while keeping the engine responsive and while also minimising the switchover time and the incurred network load. We propose solutions for these sub-problems. For NGP we propose an algorithm for incrementally adjusting the index to t the varying number of virtual machines. For ROP we present an ecient method for redistributing data among processors while keeping the search engine responsive. Regarding the solution for CNP, we propose an algorithm determining the new size of the search engine by re-evaluating its load. We tested the solution performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud. Our experiments show that when we compare our NGP solution with computing the index from scratch, the incremental algorithm speeds up the index computation 2{10 times while maintaining a similar search performance. The chosen redistribution method is 25% to 50% faster than other methods and reduces the network load around by 30%. For CNP we present a deterministic algorithm that shows a good ability to determine a new size of search engine. When combined, these algorithms give an adapting algorithm that is able to adjust the search engine size with a variable workload.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In machine learning, Gaussian process latent variable model (GP-LVM) has been extensively applied in the field of unsupervised dimensionality reduction. When some supervised information, e.g., pairwise constraints or labels of the data, is available, the traditional GP-LVM cannot directly utilize such supervised information to improve the performance of dimensionality reduction. In this case, it is necessary to modify the traditional GP-LVM to make it capable of handing the supervised or semi-supervised learning tasks. For this purpose, we propose a new semi-supervised GP-LVM framework under the pairwise constraints. Through transferring the pairwise constraints in the observed space to the latent space, the constrained priori information on the latent variables can be obtained. Under this constrained priori, the latent variables are optimized by the maximum a posteriori (MAP) algorithm. The effectiveness of the proposed algorithm is demonstrated with experiments on a variety of data sets. © 2010 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects, such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more, non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-term, highly optimized populations containing little variability respond better to environmental changes upon an increase of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual organisms that replicate their genomes under broadly different mutation rates. © 2010 Stich et al.