29 resultados para compensating
Resumo:
Error free propagation of a single polarisation optical time division multiplexed 40Gbit/s dispersion managed pulse data stream over 509km has been achieved in standard (non-dispersion shifted) fibre. Dispersion compensating fibre was used after each amplifier to reduce the high local dispersion of the standard fibre. © IEE 1999.
Resumo:
We show experimentally and numerically that in high-speed strongly dispersion-managed standard fiber soliton systems nonlinear interactions limit the propagation distance. We present results that show that the effect of these interactions can be significantly reduced by appropriate location of the amplifier within the dispersion map. Using this technique, we have been able to extend the propagation distance of 10-Gbit/s 231–1pseudorandom binary sequence soliton data to 16, 500km over standard fiber by use of dispersion compensation. To our knowledge this distance is the farthest transmission over standard fiber without active control ever reported, and it was achieved with the amplifier placed after the dispersion-compensating fiber in a recirculating loop.
Resumo:
This thesis presents experimental investigation of different effects/techniques that can be used to upgrade legacy WDM communication systems. The main issue in upgrading legacy systems is that the fundamental setup, including components settings such as EDFA gains, does not need to be altered thus the improvement must be carried out at the network terminal. A general introduction to optical fibre communications is given at the beginning, including optical communication components and system impairments. Experimental techniques for performing laboratory optical transmission experiments are presented before the experimental work of this thesis. These techniques include optical transmitter and receiver designs as well as the design and operation of the recirculating loop. The main experimental work includes three different studies. The first study involves a development of line monitoring equipment that can be reliably used to monitor the performance of optically amplified long-haul undersea systems. This equipment can provide instant finding of the fault locations along the legacy communication link which in tum enables rapid repair execution to be performed hence upgrading the legacy system. The second study investigates the effect of changing the number of transmitted 1s and Os on the performance of WDM system. This effect can, in reality, be seen in some coding systems, e.g. forward-error correction (FEC) technique, where the proportion of the 1s and Os are changed at the transmitter by adding extra bits to the original bit sequence. The final study presents transmission results after all-optical format conversion from NRZ to CSRZ and from RZ to CSRZ using semiconductor optical amplifier in nonlinear optical loop mirror (SOA-NOLM). This study is mainly based on the fact that the use of all-optical processing, including format conversion, has become attractive for the future data networks that are proposed to be all-optical. The feasibility of the SOA-NOLM device for converting single and WDM signals is described. The optical conversion bandwidth and its limitations for WDM conversion are also investigated. All studies of this thesis employ 10Gbit/s single or WDM signals being transmitted over dispersion managed fibre span in the recirculating loop. The fibre span is composed of single-mode fibres (SMF) whose losses and dispersion are compensated using erbium-doped fibre amplifiers (EDFAs) and dispersion compensating fibres (DCFs), respectively. Different configurations of the fibre span are presented in different parts.
Resumo:
We demonstrate that the transmission of 40 Gbits/s return-to-zero differential phase-shift keying (RZ-DPSK) signals is robust to lumped dispersion mapping on a typical installed terrestrial single-mode fiber/dispersion compensating fiber (SMF-DCF) link and will withstand, in this case, propagation through over 800 km of SMF with zero in-line group-velocity dispersion compensation while maintaining similar performance to configurations with periodic mapping. We establish that upgrading similar point-to-point links, which have lumped dispersion maps, are compatible with 40 Gbits/s RZ-DPSK and that economic benefits can be realized when implementing lumped dispersion mapping in new 40 Gbits/s RZ-DPSK terrestrial links, while incurring a relatively low performance penalty. (c) 2008 Optical Society of America.
Resumo:
This thesis presents a large scale numerical investigation of heterogeneous terrestrial optical communications systems and the upgrade of fourth generation terrestrial core to metro legacy interconnects to fifth generation transmission system technologies. Retrofitting (without changing infrastructure) is considered for commercial applications. ROADM are crucial enabling components for future core network developments however their re-routing ability means signals can be switched mid-link onto sub-optimally configured paths which raises new challenges in network management. System performance is determined by a trade-off between nonlinear impairments and noise, where the nonlinear signal distortions depend critically on deployed dispersion maps. This thesis presents a comprehensive numerical investigation into the implementation of phase modulated signals in transparent reconfigurable wavelength division multiplexed fibre optic communication terrestrial heterogeneous networks. A key issue during system upgrades is whether differential phase encoded modulation formats are compatible with the cost optimised dispersion schemes employed in current 10 Gb/s systems. We explore how robust transmission is to inevitable variations in the dispersion mapping and how large the margins are when suboptimal dispersion management is applied. We show that a DPSK transmission system is not drastically affected by reconfiguration from periodic dispersion management to lumped dispersion mapping. A novel DPSK dispersion map optimisation methodology which reduces drastically the optimisation parameter space and the many ways to deploy dispersion maps is also presented. This alleviates strenuous computing requirements in optimisation calculations. This thesis provides a very efficient and robust way to identify high performing lumped dispersion compensating schemes for use in heterogeneous RZ-DPSK terrestrial meshed networks with ROADMs. A modified search algorithm which further reduces this number of configuration combinations is also presented. The results of an investigation of the feasibility of detouring signals locally in multi-path heterogeneous ring networks is also presented.
Resumo:
We show experimentally and numerically that in high-speed strongly dispersion-managed standard fiber soliton systems nonlinear interactions limit the propagation distance. We present results that show that the effect of these interactions can be significantly reduced by appropriate location of the amplifier within the dispersion map. Using this technique, we have been able to extend the propagation distance of 10-Gbit/s 231–1pseudorandom binary sequence soliton data to 16, 500km over standard fiber by use of dispersion compensation. To our knowledge this distance is the farthest transmission over standard fiber without active control ever reported, and it was achieved with the amplifier placed after the dispersion-compensating fiber in a recirculating loop.
Resumo:
Nonlinearity management in transmission lines with periodic dispersion compensation and hybrid Raman-Erbium doped fiber amplification is studied both analytically and numerically. Different transmission/compensating fiber pairs are considered, with particular focus on the SMF/DCF case. © 2004 Elsevier B.V. All rights reserved.
Resumo:
We report an experimental comparison between broadband fibre Bragg gratings (FBGs) and conventional dispersion compensating fibre (DCF) for a 40 x 10Gb/s DWDM system over 525km. A performanceoptimised configuration using FBG compensators is presented.
Resumo:
A theory of nonlinearity management in transmission lines with periodic dispersion compensation and hybrid Raman-EDFA amplification is developed. Different transmission/compensating fiber pairs performances are compared and the optimal amplification scheme determined for each case.
Resumo:
Drawing on the newest findings of politeness research, this paper proposes an interactionally grounded approach to computer-mediated discourse (CMD). Through the analysis of naturally occurring text-based synchronous interactions of a virtual team the paper illustrates that the interactional politeness approach can account for linguistic phenomena not yet fully explored in computer-mediated discourse analysis. Strategies used for compensating for the lack of audio-visual information in computer-mediated communication, strategies to compensate for the technological constraints of the medium, and strategies to aid interaction management are examined from an interactional politeness viewpoint and compared to the previous findings of CMD analysis. The conclusion of this preliminary research suggests that the endeavour to communicate along the lines of politeness norms in a work-based virtual environment contradicts some of the previous findings of CMD research (unconventional orthography, capitalization, economizing), and that other areas (such as emoticons, backchannel signals and turn-taking strategies) need to be revisited and re-examined from an interactional perspective to fully understand how language functions in this merely text-based environment.
Resumo:
The behavior of a temperature self-compensating, fiber, long-period grating (LPG) device is studied. This device consists of a single 325-µm-period LPG recorded across two sections of a single-mode B-Ge-codoped fiber—one section bare and the other coated with a 1-µm thickness of Ag. This structure generates two attenuation bands associated with the eighth and ninth cladding modes, which are spectrally close together (~60 nm). The attenuation band associated with the Ag-coated section is unaffected by changes in the refractive index of the surrounding medium and can be used to compensate for the temperature of the bare-fiber section. The sensor has a resolution of ±1.0 × 10-3 for the refractive index and ±0.3 °C for the temperature. The effect of bending on the spectral characteristics of the two attenuation bands was found to be nonlinear, with the Ag-coated LPG having the greater sensitivity.
Resumo:
Measuring and compensating the pivot points of five-axis machine tools is always challenging and very time consuming. This paper presents a newly developed approach for automatic measurement and compensation of pivot point positional errors on five-axis machine tools. Machine rotary axis errors are measured using a circular test. This method has been tested on five-axis machine tools with swivel table configuration. Results show that up to 99% of the positional errors of the rotary axis can be compensated by using this approach.
Resumo:
In this talk we will review some of the key enabling technologies of optical communications and potential future bottlenecks. Single mode fibre (SMF) has long been the preferred waveguide for long distance communication. This is largely due to low loss, low cost and relative linearity over a wide bandwidth. As capacity demands have grown SMF has largely been able to keep pace with demand. Several groups have been identifying the possibility of exhausting the bandwidth provided by SMF [1,2,3]. This so called “capacity-crunch” has potentially vast economic and social consequences and will be discussed in detail. As demand grows optical power launched into the fibre has the potential to cause nonlinearities that can be detrimental to transmission. There has been considerable work done on identifying this nonlinear limit [4, 5] with a strong re- search interest currently on the topic of nonlinear compensation [6, 7]. Embracing and compensating for nonlinear transmission is one potential solution that may extend the lifetime of the current waveguide technology. However, at sufficiently high powers the waveguide will fail due to heat-induced mechanical failure. Moving forward it be- comes necessary to address the waveguide itself with several promising contenders discussed, including few-mode fibre and multi-core fibre.
Resumo:
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8km to generate a Q-switching pulse train operating at 1560.2 nm. A 7.7-km-long dispersion compensating fiber with 584 ps·nm?1km?1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395mW to 422mW, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03 μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422mW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.