34 resultados para biodiesel, catalisi eterogenea, idrotalcite
Resumo:
The heterogeneously catalyzed transesterification reaction for the production of biodiesel from triglycerides was investigated for reaction mechanism and kinetic constants. Three elementary reaction mechanisms Eley-Rideal (ER), Langmuir-Hinshelwood-Hougen-Watson (LHHW), and Hattori with assumptions, such as quasi-steady-state conditions for the surface species and methanol adsorption, and surface reactions as the rate-determining steps were applied to predict the catalyst surface coverage and the bulk concentration using a multiscale simulation framework. The rate expression based on methanol adsorption as the rate limiting in LHHW elementary mechanism has been found to be statistically the most reliable representation of the experimental data using hydrotalcite catalyst with different formulations. © 2011 American Chemical Society.
Resumo:
Concerns over dwindling oil reserves, carbon dioxide emissions from fossil fuel sources and associated climate change is driving the urgent need for clean, renewable energy supplies. The conversion of triglycerides to biodiesel via catalytic transesterification remains an energetically efficient and attractive means to generate transportation fuel1. However, current biodiesel manufacturing routes employing soluble alkali based catalysts are very energy inefficient producing copious amounts of contaminated water waste during fuel purification. Technical advances in catalyst and reactor design and introduction of non-food based feedstocks are thus required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. This presentation will give an overview of some recent developments in the design of solid acid and base catalysts for biodiesel synthesis. A particular focus will be on the benefits of designing materials with interconnected hierarchical macro-mesoporous networks to enhance mass-transport of viscous plant oils during reaction.
Resumo:
The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of routes to utilize renewable feedstocks as sustainable sources of fuels. Catalysis has a rich history of facilitating energy efficient selective molecular transformations and contributes to 90% of chemical manufacturing processes and to more than 20% of all industrial products. In a post-petroleum era catalysis will be central to overcoming the engineering and scientific barriers to economically feasible routes to bio-fuels. This article will highlight some of the recent developments in the development of solid acid and base catalysts for the transesterification of oils to biodiesel. Particular attention will be paid to the challenges faced when developing new catalysts and importance of considering the design of pore architectures to improve in-pore diffusion of bulky substrates. © 2011 Materials Research Society.
Resumo:
There is a pressing need for sustainable transportation fuels to combat both climate change and dwindling fossil fuel reserves. Biodiesel, synthesised from non-food plant (e.g., Jatropha curcas) or algal crops is one possible solution, but its energy efficient production requires design of new solid catalysts optimized for the bulky triglyceride and fatty acid feedstocks. Here we report on the synthesis of hierarchical macroporous-mesoporous silica and alumina architectures, and their subsequent functionalization by propylsulfonic acid groups or alkaline earth oxides to generate novel solid acid and base catalysts. These materials possess high surface areas and well-defined, interconnected macro-mesopore networks with respective narrow pore size distributions tuneable around 300 nm and 5 nm. Their high conductivity and improved mass transport characteristics enhance activity towards transesterification of bulky tricaprylin and palmitic acid esterification, over mesoporous analogues. This opens the way to the wider application of hierarchical catalysts in biofuel synthesis and biomass conversion.
Resumo:
High temperature processing of solvothermally synthesised MgO nanoparticles promotes striking changes in their morphology, and surface chemical and electronic structure. As-prepared NanoMgO comprised ∼4 nm cubic periclase nanocrystals, interspersed within an amorphous Mg(OH)(OCH3) matrix. These crystallites appear predominantly (1 0 0) terminated, and the overall material exhibits carbonate and hydroxyl surface functionalities of predominantly weak/moderate base character. Heating promotes gradual crystallisation and growth of the MgO nanoparticles, and concomitant loss of Mg(OH)(OCH3). In situ DRIFTS confirms the residual precursor and surface carbonate begin to decompose above 300 °C, while in situ XPS shows these morphological changes are accompanied by the disappearance of surface hydroxyl/methoxide species and genesis of O- centres which enhance both the surface density and basicity of the resulting stepped and defective MgO nanocrystals. The catalytic performance in tributyrin transesterification with methanol is directly proportional to the density of strong surface base sites. © 2010 Elsevier B.V. All rights reserved.
Resumo:
The application of heterogeneous catalysts for the manufacture of renewable biodiesel fuels offers an exciting, alternative clean chemical technology to current energy intensive processes employing soluble base catalysts. We recently synthesised tuneable MgO nanocrystals as efficent solid base catalysts for biodiesel synthesis, and have developed a simple X-ray spectroscopic method to quantitatively determine surface basicity, thereby providing a rapid screening tool for predicting the reactivity of new solid base catalysts. Promotion of these MgO nanocrystals through Cs doping dramatically enhances biodiesel production rates due to the formaion of a mixed Cs Mg(CO ) phase. These MgO derived nanocatalysts permit energy efficent, continuous processing of diverse, sustainable oil feedstocks in flow reactors.
Resumo:
The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of clean, sustainable energy supplies. Biodiesel is non-toxic and biodegradable, with the potential for closed CO2 cycles and thus vastly reduced carbon footprints compared with petroleum fuels. However, current manufacturing routes employing soluble catalysts are very energy inefficient and produce copious amounts of contaminated water waste. This review highlights the significant progress made in recent years towards developing solid acid and base catalysts for biodiesel synthesis. Issues to be addressed in the future are also discussed including the introduction of non-edible oil feedstocks, as well as technical advances in catalyst and reactor design to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century.
Resumo:
The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of clean, sustainable energy supplies. Biodiesel is a non-toxic and biodegradable fuel, with the potential for closed CO2 cycles and thus vastly reduced carbon footprints compared with petroleum. However, current manufacturing routes employing soluble catalysts are very energy inefficient, with their removal necessitating an energy intensive separation to purify biodiesel, which in turn produces copious amounts of contaminated aqueous waste. The introduction of non-food based feedstocks and technical advances in heterogeneous catalyst and reactor design are required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. Here we report on the development of tuneable solid acid and bases for biodiesel synthesis, which offer several process advantages by eliminating the quenching step and allowing operation in a continuous reactor. Significant progress has been made towards developing tuneable solid base catalysts for biodiesel synthesis, including Li/CaO [1], Mg-Al hydrotalcites [2] and calcined dolomite [3] which exhibit excellent activity for triglyceride transesterification. However, the effects of solid base strength on catalytic activity in biodiesel synthesis remains poorly understood, hampering material optimisation and commercial exploitation. To improve our understanding of factors influencing solid base catalysts for biodiesel synthesis, we have applied a simple spectroscopic method for the quantitative determination of surface basicity which is independent of adsorption probes. Such measurements reveal how the morphology and basicity of MgO nanocrystals correlate with their biodiesel synthesis activity [4]. While diverse solid acids and bases have been investigated for TAG transesterification, the micro and mesoporous nature of catalyst systems investigated to date are not optimal for the diffusion of bulky and viscous C16-C18 TAGs typical of plant oils. The final part of this presentation will address the benefits of designing porous networks comprising interconnected hierarchical macroporous and mesoporous channels (Figure 1) to enhance mass-transport properties of viscous plant oils during biodiesel synthesis [5]. References: [1] R.S. Watkins, A.F. Lee, K. Wilson, Green Chem., 2004, 6, 335. [2]D.G. Cantrell, L.J. Gillie, A.F. Lee and K. Wilson, Appl. Catal. A, 2005, 287,183. [3] C. Hardacre, A.F. Lee, J.M. Montero, L. Shellard, K.Wilson, Green Chem., 2008, 10, 654. [4] J.M. Montero, P.L. Gai, K. Wilson, A.F. Lee, Green Chem., 2009, 11, 265. [5] J. Dhainaut, J.-P. Dacquin, A.F. Lee, K. Wilson, Green Chem., 2010, 12, 296.
Resumo:
Cs exchanged silicotungstic acid catalysts of general formula CsxH4−xSiW12O40 (x = 0.8–4) have been synthesised and characterised by a range of techniques including elemental analysis, N2 gas adsorption, XRD, XPS and NH3 flow calorimetry. Cs substitution promotes recrystallisation of the parent H4SiW12O40 polyoxometallate to the Cs4 salt, via a stable intermediate phase formed at compositions between Cs0.8–2.8. This recrystallisation is accompanied by a pronounced rise and subsequent fall in porosity, with a maximum mesopore volume obtained for materials containing 2.8 Cs atoms per Keggin unit. Calorimetry reveals all CsxH4−xSiW12O40 are strong acids, with ΔHθads(NH3) ranging from −142 to 116 kJ mol−1 with increasing Cs content, consistently weaker than their phosphotungstic analogues. CsxH4−xSiW12O40 materials are active catalysts for both C4 and C8 triglyceride transesterification, and palmitic acid esterification with methanol. For loadings ≤0.8 Cs per Keggin, (trans)esterification activity arises from homogeneous contributions. However, higher degrees of substitution result in entirely heterogeneous catalysis, with rates proportional to the density of accessible acid sites present within mesopores.
Resumo:
A series of alkali-doped metal oxide catalysts were prepared and evaluated for activity in the transesterification of rapeseed oil to biodiesel. Of those evaluated, LiNO3/CaO, NaNO3/CaO, KNO3/CaO and LiNO3/MgO exhibited >90% conversion in a standard 3 h test. There was a clear correlation between base strength and activity. These catalysts appeared to be promising candidates to replace conventional homogeneous catalysts for biodiesel production as the reaction times are low enough to be practical in continuous processes and the preparations are neither prohibitively difficult nor costly. However, metal leaching from the catalyst was detected, and this resulted in some homogeneous activity. This would have to be resolved before these catalysts would be viable for large-scale biodiesel production facilities.
Resumo:
Biodiesel production is a very promising area due to the relevance that it is an environmental-friendly diesel fuel alternative to fossil fuel derived diesel fuels. Nowadays, most industrial applications of biodiesel production are performed by the transesterification of renewable biological sources based on homogeneous acid catalysts, which requires downstream neutralization and separation leading to a series of technical and environmental problems. However, heterogeneous catalyst can solve these issues, and be used as a better alternative for biodiesel production. Thus, a heuristic diffusion-reaction kinetic model has been established to simulate the transesterification of alkyl ester with methanol over a series of heterogeneous Cs-doped heteropolyacid catalysts. The novelty of this framework lies in detailed modeling of surface reacting kinetic phenomena and integrating that with particle-level transport phenomena all the way through to process design and optimisation, which has been done for biodiesel production process for the first time. This multi-disciplinary research combining chemistry, chemical engineering and process integration offers better insights into catalyst design and process intensification for the industrial application of Cs-doped heteropolyacid catalysts for biodiesel production. A case study of the transesterification of tributyrin with methanol has been demonstrated to establish the effectiveness of this methodology.
Resumo:
Biodiesel production is a very promising area due to the relevance that it is an environmental-friendly diesel fuel alternative to fossil fuel derived diesel fuels. Nowadays, most industrial applications of biodiesel production are performed by the transesterification of renewable biological sources based on homogeneous acid catalysts, which requires downstream neutralization and separation leading to a series of technical and environmental problems. However, heterogeneous catalyst can solve these issues, and be used as a better alternative for biodiesel production. Thus, a heuristic diffusion-reaction kinetic model has been established to simulate the transesterification of alkyl ester with methanol over a series of heterogeneous Cs-doped heteropolyacid catalysts. The novelty of this framework lies in detailed modeling of surface reacting kinetic phenomena and integrating that with particle-level transport phenomena all the way through to process design and optimisation, which has been done for biodiesel production process for the first time. This multi-disciplinary research combining chemistry, chemical engineering and process integration offers better insights into catalyst design and process intensification for the industrial application of Cs-doped heteropolyacid catalysts for biodiesel production. A case study of the transesterification of tributyrin with methanol has been demonstrated to establish the effectiveness of this methodology.
Resumo:
Biodiesel is a renewable substitute fuel for petroleum diesel fuel which is made from nontoxic, biodegradable, renewable sources such as refined and used vegetable oils and animal fats. Biodiesel is produced by transesterification in which oil or fat is reacted with a monohydric alcohol in the presence of a catalyst. The process of transesterification is affected by the mode of reaction, molar ratio of alcohol to oil, type of alcohol, nature and amount of catalysts, reaction time, and temperature. Various studies have been carried out using different oils as the raw material and different alcohols (methanol, ethanol, butanol), as well as different catalysts, notably homogeneous ones such as sodium hydroxide, potassium hydroxide, sulfuric acid, and supercritical fluids or enzymes such as lipases. Recent research has focused on the application of heterogeneous catalysts to produce biodiesel, because of their environmental and economic advantages. This paper reviews the literature regarding both catalytic and noncatalytic production of biodiesel. Advantages and disadvantages of different methods and catalysts used are discussed. We also discuss the importance of developing a single catalyst for both esterification and transesterification reactions.
Resumo:
A series of insoluble heteropolytungstate (H3PW12O40 HPW) salts, CsxH3−xPW12O40 (x=0.9–3x=0.9–3), were synthesized and characterized using a range of bulk and surface sensitive probes including N2 porosimetry, powder XRD, FTIR, XPS, 31P MAS NMR, and NH3 calorimetry. Materials with Cs content in the range x=2.0–2.7x=2.0–2.7 were composed of dispersed crystallites with surface areas ∼100 m2 g−1 and high Brönsted acid strengths [ΔH0ads(NH3)=−150 kJmol−1], similar to the parent heteropolyacid. The number of accessible surface acid sites probed by α -pinene isomerization correlated well with those determined by NH3 adsorption calorimetry and surface area measurements. CsxH3−xPW12O40 were active toward the esterification of palmitic acid and transesterification of tributyrin, important steps in fatty acid and ester processing for biodiesel synthesis. Optimum performance occurs for Cs loadings of x=2.0–2.3x=2.0–2.3, correlating with the accessible surface acid site density. These catalysts were recoverable with no leaching of soluble HPW.
Resumo:
A series of [Mg(1−x)Alx(OH)2]x+(CO3)x/n2− hydrotalcite materials with compositions over the range x = 0.25–0.55 have been synthesised using an alkali-free coprecipitation route. All materials exhibit XRD patterns characteristic of the hydrotalcite phase with a steady lattice expansion observed with increasing Mg content. XPS measurements reveal a decrease in both the Al and Mg photoelectron binding energies with Mg incorporation which correlates with the increased intra-layer electron density. All materials are effective catalysts for the liquid phase transesterification of glyceryl tributyrate with methanol for biodiesel production. The rate increases steadily with Mg content, with the Mg rich Mg2.93Al catalyst an order of magnitude more active than MgO, with pure Al2O3 being completely inert. The rate of reaction also correlates with intralayer electron density which can be associated with increased basicity.© 2005 Elsevier B.V. All rights reserved.