31 resultados para automatic sequencer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study here highlights the potential that analytical methods based on Knowledge Discovery in Databases (KDD) methodologies have to aid both the resolution of unstructured marketing/business problems and the process of scholarly knowledge discovery. The authors present and discuss the application of KDD in these situations prior to the presentation of an analytical method based on fuzzy logic and evolutionary algorithms, developed to analyze marketing databases and uncover relationships among variables. A detailed implementation on a pre-existing data set illustrates the method. © 2012 Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary writing is an important part of many English Language Examinations. As grading students' summary writings is a very time-consuming task, computer-assisted assessment will help teachers carry out the grading more effectively. Several techniques such as latent semantic analysis (LSA), n-gram co-occurrence and BLEU have been proposed to support automatic evaluation of summaries. However, their performance is not satisfactory for assessing summary writings. To improve the performance, this paper proposes an ensemble approach that integrates LSA and n-gram co-occurrence. As a result, the proposed ensemble approach is able to achieve high accuracy and improve the performance quite substantially compared with current techniques. A summary assessment system based on the proposed approach has also been developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Online communities are prime sources of information. The Web is rich with forums and Question Answering (Q&A) communities where people go to seek answers to all kinds of questions. Most systems employ manual answer-rating procedures to encourage people to provide quality answers and to help users locate the best answers in a given thread. However, in the datasets we collected from three online communities, we found that half their threads lacked best answer markings. This stresses the need for methods to assess the quality of available answers to: 1) provide automated ratings to fill in for, or support, manually assigned ones, and; 2) to assist users when browsing such answers by filtering in potential best answers. In this paper, we collected data from three online communities and converted it to RDF based on the SIOC ontology. We then explored an approach for predicting best answers using a combination of content, user, and thread features. We show how the influence of such features on predicting best answers differs across communities. Further we demonstrate how certain features unique to some of our community systems can boost predictability of best answers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of automatically obtaining the object/background segmentation of a rigid 3D object observed in a set of images that have been calibrated for camera pose and intrinsics. Such segmentations can be used to obtain a shape representation of a potentially texture-less object by computing a visual hull. We propose an automatic approach where the object to be segmented is identified by the pose of the cameras instead of user input such as 2D bounding rectangles or brush-strokes. The key behind our method is a pairwise MRF framework that combines (a) foreground/background appearance models, (b) epipolar constraints and (c) weak stereo correspondence into a single segmentation cost function that can be efficiently solved by Graph-cuts. The segmentation thus obtained is further improved using silhouette coherency and then used to update the foreground/background appearance models which are fed into the next Graph-cut computation. These two steps are iterated until segmentation convergences. Our method can automatically provide a 3D surface representation even in texture-less scenes where MVS methods might fail. Furthermore, it confers improved performance in images where the object is not readily separable from the background in colour space, an area that previous segmentation approaches have found challenging. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latent topics derived by topic models such as Latent Dirichlet Allocation (LDA) are the result of hidden thematic structures which provide further insights into the data. The automatic labelling of such topics derived from social media poses however new challenges since topics may characterise novel events happening in the real world. Existing automatic topic labelling approaches which depend on external knowledge sources become less applicable here since relevant articles/concepts of the extracted topics may not exist in external sources. In this paper we propose to address the problem of automatic labelling of latent topics learned from Twitter as a summarisation problem. We introduce a framework which apply summarisation algorithms to generate topic labels. These algorithms are independent of external sources and only rely on the identification of dominant terms in documents related to the latent topic. We compare the efficiency of existing state of the art summarisation algorithms. Our results suggest that summarisation algorithms generate better topic labels which capture event-related context compared to the top-n terms returned by LDA. © 2014 Association for Computational Linguistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows how the angular uncertainties can be determined for a rotary-laser automatic theodolite of the type used in (indoor-GPS) iGPS networks. Initially, the fundamental physics of the rotating head device is used to propagate uncertainties using Monte Carlo simulation. This theoretical element of the study shows how the angular uncertainty is affected by internal parameters, the actual values of which are estimated. Experiments are then carried out to determine the actual uncertainty in the azimuth angle. Results are presented that show that uncertainty decreases with sampling duration. Other significant findings are that uncertainty is relatively constant throughout the working volume and that the uncertainty value is not dependent on the size of the reference angle. © 2009 IMechE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper looks at how automatic load transfer may be used as a possible planning tool to help deliver faster connections for customers. A trial on an area of overhead line Network is presented to show how improvements in % feeder utilisation may be realised by changing the location of the open point. The reported Network data is compared to calculated data under two different configurations over a two week trial period. The results show that ALT open point determination in the presence of generation is different from a load only circuit and that the open points may not be fixed with time. Looking at improvements in Network headroom may not be conducive to other improvements in the network such as loss reduction or improving voltage profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Category hierarchy is an abstraction mechanism for efficiently managing large-scale resources. In an open environment, a category hierarchy will inevitably become inappropriate for managing resources that constantly change with unpredictable pattern. An inappropriate category hierarchy will mislead the management of resources. The increasing dynamicity and scale of online resources increase the requirement of automatically maintaining category hierarchy. Previous studies about category hierarchy mainly focus on either the generation of category hierarchy or the classification of resources under a pre-defined category hierarchy. The automatic maintenance of category hierarchy has been neglected. Making abstraction among categories and measuring the similarity between categories are two basic behaviours to generate a category hierarchy. Humans are good at making abstraction but limited in ability to calculate the similarities between large-scale resources. Computing models are good at calculating the similarities between large-scale resources but limited in ability to make abstraction. To take both advantages of human view and computing ability, this paper proposes a two-phase approach to automatically maintaining category hierarchy within two scales by detecting the internal pattern change of categories. The global phase clusters resources to generate a reference category hierarchy and gets similarity between categories to detect inappropriate categories in the initial category hierarchy. The accuracy of the clustering approaches in generating category hierarchy determines the rationality of the global maintenance. The local phase detects topical changes and then adjusts inappropriate categories with three local operations. The global phase can quickly target inappropriate categories top-down and carry out cross-branch adjustment, which can also accelerate the local-phase adjustments. The local phase detects and adjusts the local-range inappropriate categories that are not adjusted in the global phase. By incorporating the two complementary phase adjustments, the approach can significantly improve the topical cohesion and accuracy of category hierarchy. A new measure is proposed for evaluating category hierarchy considering not only the balance of the hierarchical structure but also the accuracy of classification. Experiments show that the proposed approach is feasible and effective to adjust inappropriate category hierarchy. The proposed approach can be used to maintain the category hierarchy for managing various resources in dynamic application environment. It also provides an approach to specialize the current online category hierarchy to organize resources with more specific categories.