67 resultados para alpaca fibers
Resumo:
The production and characterization of narrow bandwidth fiber Bragg gratings (FBGs) in different spectral regions using polymer optical fibers (POFs) is reported. Narrow bandwidth FBGs are increasingly important for POF transmission systems, WDM technology and sensing applications. Long FBGs with resonance wavelength around 600-nm, 850-nm and 1550-nm in several types of polymer optical fibers were inscribed using a scanning technique with a short optical path. The technique allowed the inscription in relative short periods of time. The obtained 3-dB bandwidth varies from 0.22 down to 0.045 nm considering a Bragg grating length between 10 and 25-mm, respectively.
Resumo:
We report two recent studies dealing with the evolution of parabolic pulses in normally dispersive fibres. On the one hand, the nonlinear reshaping from a Gaussian intensity profile towards the asymptotic parabolic shape is experimentally investigated in a Raman amplifier. On the other hand, the significant impact of the fourth order dispersion on a passive propagation is theoretically discussed: we numerically demonstrate flat-top, coherent supercontinuum generation in an all-normal dispersion-flattened photonic crystal fiber. This shape is associated to a strong reshaping of the temporal profile what becomes triangular.
Resumo:
In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.
Resumo:
Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.
Resumo:
The fabrication of micro-channels in single-mode optical fibers is demonstrated using focused femtosecond laser processing and chemical etching. Straight line micro-channels are achieved based on a simple technique which overcomes limitations imposed by the fiber curved surface. © 2005 Optical Society of America.
Resumo:
For the first time, Fiber Bragg grating (FBG) structures have been inscribed in single-core passive germanate and three-core passive and active tellurite glass fibers using 800 nm femtosecond (fs) laser and phase mask technique. With fs peak power intensity in the order of 10(11)W/cm(2), the FBG spectra with 2nd and 3rd order resonances at 1540 and 1033 nm in the germanate glass fiber and 2nd order resonances at approximately 1694 and approximately 1677 nm with strengths up to 14 dB in all three cores in the tellurite fiber were observed. Thermal responsivities of the FBGs made in these mid-IR glass fibers were characterized, showing average temperature responsivity approximately 20 pm/ degrees C. Strain responsivities of the FBGs in germanate glass fiber were measured to be 1.219 pm/microepsilon.
Resumo:
We have fabricated a neodymium-doped phosphate glass fiber with a silica cladding and used it to form a fiber laser. Phosphate and silicate glasses have considerably different glass transition temperatures and softening points making it hard to draw a fiber from these two glasses. A bulk phosphate glass of composition (Nd2O3)(0.011)(La2O3)(0.259)(P2O5)(0.725)(Al2O3)(0.005) was prepared and the resultant material was transparent, free from bubbles and visibly homogeneous. The bulk phosphate glass was drawn to a fiber while being jacketed with silica and the resultant structure was of good optical quality, free from air bubbles and major defects. The attenuation at a wavelength of 1.06 mu m was 0.05 dB/cm and the refractive index of the core and cladding at the pump wavelength of 488 nm was 1.56 and 1.46, respectively. The fibers were mechanically strong enough to allow for ease of handling and could be spliced to conventional silica fiber. The fibers were used to demonstrate lasing at the F-4(3/2) - I-4(11/2) (1.06 mu m) transition. Our work demonstrates the potential to form silica clad optical fibers with phosphate cores doped with very high levels of rare-earth ions (27-mol % rare-earth oxide).
Resumo:
We experimentally compare the performance of standard single-mode fiber (SSMF) and UltraWave fiber (UWF) for ultra-long-haul (ULH) 40-Gb/s wavelength- division- multiplexing transmissions. We used the carrier-suppressed return-to-zero amplitude-shift-keying (CSRZ-ASK) and the carrier-suppressed return-to-zero differential-phase-shift-keying (CSRZ-DPSK) formats, which are particularly well-adapted to 40-Gb/s pulse-overlapped propagation. We demonstrate that transmission distance well beyond 2000 km can be reached on UWF with both the CSRZ-ASK and CSRZ-DPSK formats, or on SSMF with the CSRZ-DPSK format only, thus indicating that SSMF-based infrastructure of incumbent carriers can be upgraded at 40-Gb/s channel rates to ULH distances. © 2007 IEEE.
Resumo:
We report on the production and characterization of narrow bandwidth fiber Bragg gratings (FBGs) in two spectral regions using polymer optical fibers (POFs). Narrow bandwidth FBGs are increasingly important for POF transmission systems, WDM technology and sensing applications. Long FBGs with resonance wavelength around 850 nm and 1550 nm were fabricated in several types of polymer optical fibers. The 3 dB FBG bandwidth varies from 0.22 nm down to 0.045 nm considering a Bragg grating length of 10 mm and 25 mm, respectively. © 2013 SPIE.
Resumo:
The production and characterization of narrow bandwidth fiber Bragg gratings (FBGs) in different spectral regions using polymer optical fibers (POFs) is reported. Narrow bandwidth FBGs are increasingly important for POF transmission systems, WDM technology and sensing applications. Long FBGs with resonance wavelength around 600-nm, 850-nm and 1550-nm in several types of polymer optical fibers were inscribed using a scanning technique with a short optical path. The technique allowed the inscription in relative short periods of time. The obtained 3-dB bandwidth varies from 0.22 down to 0.045 nm considering a Bragg grating length between 10 and 25-mm, respectively. © 2013 Elsevier B.V.
Resumo:
Microchannels are fabricated into conventional single-mode fibers by femtosecond laser processing and chemical etching. Fabrication limitations imposed by the fiber geometry are highlighted and resolved through a simple technique without compromising fabrication flexibility. A microfluidic fiber device consisting of a 4 μm wide microchannel that intersects the fiber core for refractive index sensing is further demonstrated. © 2006 Optical Society of America.
Resumo:
We present modulation instability analysis including azimuthal perturbations of steady-state continuous wave (CW) propagation in multicore-fiber configurations with a central core. In systems with a central core, a steady CW evolution regime requires power-controlled phase matching, which offers interesting spatial-division applications. Our results have general applicability and are relevant to a range of physical and engineering systems, including high-power fiber lasers, optical transmission in multicore fiber, and systems of coupled nonlinear waveguides. © 2013 Optical Society of America.
Resumo:
We report an investigation on the group delay spread in few-mode fibers operating in the weak and strong linear coupling regimes, and for the first time, we study the transition region between them. A single expression linking the group delay spread to the fiber correlation length is validated for any coupling regime, considering 3 guided modes.
Resumo:
Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test. © 2008 American Chemical Society.