35 resultados para XML, Information, Retrieval, Query, Language
Resumo:
This paper presents an interactive content-based image retrieval framework—uInteract, for delivering a novel four-factor user interaction model visually. The four-factor user interaction model is an interactive relevance feedback mechanism that we proposed, aiming to improve the interaction between users and the CBIR system and in turn users overall search experience. In this paper, we present how the framework is developed to deliver the four-factor user interaction model, and how the visual interface is designed to support user interaction activities. From our preliminary user evaluation result on the ease of use and usefulness of the proposed framework, we have learnt what the users like about the framework and the aspects we could improve in future studies. Whilst the framework is developed for our research purposes, we believe the functionalities could be adapted to any content-based image search framework.
Resumo:
Dissimilarity measurement plays a crucial role in content-based image retrieval, where data objects and queries are represented as vectors in high-dimensional content feature spaces. Given the large number of dissimilarity measures that exist in many fields, a crucial research question arises: Is there a dependency, if yes, what is the dependency, of a dissimilarity measure’s retrieval performance, on different feature spaces? In this paper, we summarize fourteen core dissimilarity measures and classify them into three categories. A systematic performance comparison is carried out to test the effectiveness of these dissimilarity measures with six different feature spaces and some of their combinations on the Corel image collection. From our experimental results, we have drawn a number of observations and insights on dissimilarity measurement in content-based image retrieval, which will lay a foundation for developing more effective image search technologies.
Resumo:
While semantic search technologies have been proven to work well in specific domains, they still have to confront two main challenges to scale up to the Web in its entirety. In this work we address this issue with a novel semantic search system that a) provides the user with the capability to query Semantic Web information using natural language, by means of an ontology-based Question Answering (QA) system [14] and b) complements the specific answers retrieved during the QA process with a ranked list of documents from the Web [3]. Our results show that ontology-based semantic search capabilities can be used to complement and enhance keyword search technologies.
Resumo:
This paper presents our Semantic Web portal infrastructure, which focuses on how to enhance knowledge access in traditional Web portals by gathering and exploiting semantic metadata. Special attention is paid to three important issues that affect the performance of knowledge access: i) high quality metadata acquisition, which concerns how to ensure high quality while gathering semantic metadata from heterogeneous data sources; ii) semantic search, which addresses how to meet the information querying needs of ordinary end users who are not necessarily familiar with the problem domain or the supported query language; and iii) semantic browsing, which concerns how to help users understand and explore the problem domain.
Resumo:
Term dependence is a natural consequence of language use. Its successful representation has been a long standing goal for Information Retrieval research. We present a methodology for the construction of a concept hierarchy that takes into account the three basic dimensions of term dependence. We also introduce a document evaluation function that allows the use of the concept hierarchy as a user profile for Information Filtering. Initial experimental results indicate that this is a promising approach for incorporating term dependence in the way documents are filtered.
Resumo:
The project “Reference in Discourse” deals with the selection of a specific object from a visual scene in a natural language situation. The goal of this research is to explain this everyday discourse reference task in terms of a concept generation process based on subconceptual visual and verbal information. The system OINC (Object Identification in Natural Communicators) aims at solving this problem in a psychologically adequate way. The system’s difficulties occurring with incomplete and deviant descriptions correspond to the data from experiments with human subjects. The results of these experiments are reported.
Resumo:
In recent years, learning word vector representations has attracted much interest in Natural Language Processing. Word representations or embeddings learned using unsupervised methods help addressing the problem of traditional bag-of-word approaches which fail to capture contextual semantics. In this paper we go beyond the vector representations at the word level and propose a novel framework that learns higher-level feature representations of n-grams, phrases and sentences using a deep neural network built from stacked Convolutional Restricted Boltzmann Machines (CRBMs). These representations have been shown to map syntactically and semantically related n-grams to closeby locations in the hidden feature space. We have experimented to additionally incorporate these higher-level features into supervised classifier training for two sentiment analysis tasks: subjectivity classification and sentiment classification. Our results have demonstrated the success of our proposed framework with 4% improvement in accuracy observed for subjectivity classification and improved the results achieved for sentiment classification over models trained without our higher level features.
Representing clinical documents to support automatic retrieval of evidence from the Cochrane Library
Resumo:
The overall aim of our research is to develop a clinical information retrieval system that retrieves systematic reviews and underlying clinical studies from the Cochrane Library to support physician decision making. We believe that in order to accomplish this goal we need to develop a mechanism for effectively representing documents that will be retrieved by the application. Therefore, as a first step in developing the retrieval application we have developed a methodology that semi-automatically generates high quality indices and applies them as descriptors to documents from The Cochrane Library. In this paper we present a description and implementation of the automatic indexing methodology and an evaluation that demonstrates that enhanced document representation results in the retrieval of relevant documents for clinical queries. We argue that the evaluation of information retrieval applications should also include an evaluation of the quality of the representation of documents that may be retrieved. ©2010 IEEE.
Resumo:
This thesis initially presents an 'assay' of the literature pertaining to individual differences in human-computer interaction. A series of experiments is then reported, designed to investigate the association between a variety of individual characteristics and various computer task and interface factors. Predictor variables included age, computer expertise, and psychometric tests of spatial visualisation, spatial memory, logical reasoning, associative memory, and verbal ability. These were studied in relation to a variety of computer-based tacks, including: (1) word processing and its component elements; (ii) the location of target words within passages of text; (iii) the navigation of networks and menus; (iv) command generation using menus and command line interfaces; (v) the search and selection of icons and text labels; (vi) information retrieval. A measure of self-report workload was also included in several of these experiments. The main experimental findings included: (i) an interaction between spatial ability and the manipulation of semantic but not spatial interface content; (ii) verbal ability being only predictive of certain task components of word processing; (iii) age differences in word processing and information retrieval speed but not accuracy; (iv) evidence of compensatory strategies being employed by older subjects; (v) evidence of performance strategy differences which disadvantaged high spatial subjects in conditions of low spatial information content; (vi) interactive effects of associative memory, expertise and command strategy; (vii) an association between logical reasoning and word processing but not information retrieval; (viii) an interaction between expertise and cognitive demand; and (ix) a stronger association between cognitive ability and novice performance than expert performance.
Resumo:
Web document cluster analysis plays an important role in information retrieval by organizing large amounts of documents into a small number of meaningful clusters. Traditional web document clustering is based on the Vector Space Model (VSM), which takes into account only two-level (document and term) knowledge granularity but ignores the bridging paragraph granularity. However, this two-level granularity may lead to unsatisfactory clustering results with “false correlation”. In order to deal with the problem, a Hierarchical Representation Model with Multi-granularity (HRMM), which consists of five-layer representation of data and a twophase clustering process is proposed based on granular computing and article structure theory. To deal with the zero-valued similarity problemresulted from the sparse term-paragraphmatrix, an ontology based strategy and a tolerance-rough-set based strategy are introduced into HRMM. By using granular computing, structural knowledge hidden in documents can be more efficiently and effectively captured in HRMM and thus web document clusters with higher quality can be generated. Extensive experiments show that HRMM, HRMM with tolerancerough-set strategy, and HRMM with ontology all outperform VSM and a representative non VSM-based algorithm, WFP, significantly in terms of the F-Score.
Resumo:
The practice of evidence-based medicine involves consulting documents from repositories such as Scopus, PubMed, or the Cochrane Library. The most common approach for presenting retrieved documents is in the form of a list, with the assumption that the higher a document is on a list, the more relevant it is. Despite this list-based presentation, it is seldom studied how physicians perceive the importance of the order of documents presented in a list. This paper describes an empirical study that elicited and modeled physicians' preferences with regard to list-based results. Preferences were analyzed using a GRIP method that relies on pairwise comparisons of selected subsets of possible rank-ordered lists composed of 3 documents. The results allow us to draw conclusions regarding physicians' attitudes towards the importance of having documents ranked correctly on a result list, versus the importance of retrieving relevant but misplaced documents. Our findings should help developers of clinical information retrieval applications when deciding how retrieved documents should be presented and how performance of the application should be assessed. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Timeline generation is an important research task which can help users to have a quick understanding of the overall evolution of any given topic. It thus attracts much attention from research communities in recent years. Nevertheless, existing work on timeline generation often ignores an important factor, the attention attracted to topics of interest (hereafter termed "social attention"). Without taking into consideration social attention, the generated timelines may not reflect users' collective interests. In this paper, we study how to incorporate social attention in the generation of timeline summaries. In particular, for a given topic, we capture social attention by learning users' collective interests in the form of word distributions from Twitter, which are subsequently incorporated into a unified framework for timeline summary generation. We construct four evaluation sets over six diverse topics. We demonstrate that our proposed approach is able to generate both informative and interesting timelines. Our work sheds light on the feasibility of incorporating social attention into traditional text mining tasks. Copyright © 2013 ACM.
Resumo:
Two studies aiming to identify the nature and extent of problems that people have when completing theory of planned behaviour (TPB) questionnaires, using a cognitive interviewing approach are reported. Both studies required participants to 'think aloud' as they completed TPB questionnaires about: (a) increasing physical activity (six general public participants); and (b) binge drinking (13 students). Most people had no identifiable problems with the majority of questions. However, there were problems common to both studies, relating to information retrieval and to participants answering different questions from those intended by researchers. Questions about normative influence were particularly problematic. The standard procedure for developing TPB questionnaires may systematically produce problematic questions. Suggestions are made for improving this procedure. Copyright © 2007 SAGE Publications.
Resumo:
Most object-based approaches to Geographical Information Systems (GIS) have concentrated on the representation of geometric properties of objects in terms of fixed geometry. In our road traffic marking application domain we have a requirement to represent the static locations of the road markings but also enforce the associated regulations, which are typically geometric in nature. For example a give way line of a pedestrian crossing in the UK must be within 1100-3000 mm of the edge of the crossing pattern. In previous studies of the application of spatial rules (often called 'business logic') in GIS emphasis has been placed on the representation of topological constraints and data integrity checks. There is very little GIS literature that describes models for geometric rules, although there are some examples in the Computer Aided Design (CAD) literature. This paper introduces some of the ideas from so called variational CAD models to the GIS application domain, and extends these using a Geography Markup Language (GML) based representation. In our application we have an additional requirement; the geometric rules are often changed and vary from country to country so should be represented in a flexible manner. In this paper we describe an elegant solution to the representation of geometric rules, such as requiring lines to be offset from other objects. The method uses a feature-property model embraced in GML 3.1 and extends the possible relationships in feature collections to permit the application of parameterized geometric constraints to sub features. We show the parametric rule model we have developed and discuss the advantage of using simple parametric expressions in the rule base. We discuss the possibilities and limitations of our approach and relate our data model to GML 3.1. © 2006 Springer-Verlag Berlin Heidelberg.
The effective use of implicit parallelism through the use of an object-oriented programming language
Resumo:
This thesis explores translating well-written sequential programs in a subset of the Eiffel programming language - without syntactic or semantic extensions - into parallelised programs for execution on a distributed architecture. The main focus is on constructing two object-oriented models: a theoretical self-contained model of concurrency which enables a simplified second model for implementing the compiling process. There is a further presentation of principles that, if followed, maximise the potential levels of parallelism. Model of Concurrency. The concurrency model is designed to be a straightforward target for mapping sequential programs onto, thus making them parallel. It aids the compilation process by providing a high level of abstraction, including a useful model of parallel behaviour which enables easy incorporation of message interchange, locking, and synchronization of objects. Further, the model is sufficient such that a compiler can and has been practically built. Model of Compilation. The compilation-model's structure is based upon an object-oriented view of grammar descriptions and capitalises on both a recursive-descent style of processing and abstract syntax trees to perform the parsing. A composite-object view with an attribute grammar style of processing is used to extract sufficient semantic information for the parallelisation (i.e. code-generation) phase. Programming Principles. The set of principles presented are based upon information hiding, sharing and containment of objects and the dividing up of methods on the basis of a command/query division. When followed, the level of potential parallelism within the presented concurrency model is maximised. Further, these principles naturally arise from good programming practice. Summary. In summary this thesis shows that it is possible to compile well-written programs, written in a subset of Eiffel, into parallel programs without any syntactic additions or semantic alterations to Eiffel: i.e. no parallel primitives are added, and the parallel program is modelled to execute with equivalent semantics to the sequential version. If the programming principles are followed, a parallelised program achieves the maximum level of potential parallelisation within the concurrency model.