30 resultados para Wood distillation
Resumo:
This work is concerned with the nature of liquid flow across industrial sieve trays operating in the spray, mixed, and the emulsified flow regimes. In order to overcome the practical difficulties of removing many samples from a commercial tray, the mass transfer process was investigated in an air water simulator column by heat transfer analogy. The temperature of the warm water was measured by many thermocouples as the water flowed across the single pass 1.2 m diameter sieve tray. The thermocouples were linked to a mini computer for the storage of the data. The temperature data were then transferred to a main frame computer to generate temperature profiles - analogous to concentration profiles. A comprehensive study of the existing tray efficiency models was carried out using computerised numerical solutions. The calculated results were compared with experimental results published by the Fractionation Research Incorporation (FRl) and the existing models did not show any agreement with the experimental results. Only the Porter and Lockett model showed a reasonable agreement with the experimental results for cenain tray efficiency values. A rectangular active section tray was constructed and tested to establish the channelling effect and the result of its effect on circular tray designs. The developed flow patterns showed predominantly flat profiles and some indication of significant liquid flow through the central region of the tray. This comfirms that the rectangular tray configuration might not be a satisfactory solution for liquid maldistribution on sieve trays. For a typical industrial tray the flow of liquid as it crosses the tray from the inlet to the outlet weir could be affected by the mixing of liquid by the eddy, momentum and the weir shape in the axial or the transverse direction or both. Conventional U-shape profiles were developed when the operating conditions were such that the froth dispersion was in the mixed regime, with good liquid temperature distribution while in the spray regime. For the 12.5 mm hole diameter tray the constant temperature profiles were found to be in the axial direction while in the spray regime and in the transverse direction for the 4.5 mm hole tray. It was observed that the extent of the liquid stagnant zones at the sides of the tray depended on the tray hole diameter and was larger for the 4.5 mm hole tray. The liquid hold-up results show a high liquid hold-up at the areas of the tray with low liquid temperatures, this supports the doubts about the assumptions of constant point efficiency across an operating tray. Liquid flow over the outlet weir showed more liquid flow at the centre of the tray at high liquid loading with low liquid flow at both ends of the weir. The calculated results of the point and tray efficiency model showed a general increase in the calculated point and tray efficiencies with an increase in the weir loading, as the flow regime changed from the spray to the mixed regime the point and the tray efficiencies increased from approximately 30 to 80%.Through the mixed flow regime the efficiencies were found to remain fairly constant, and as the operating conditions were changed to maintain an emulsified flow regime there was a decrease in the resulting efficiencies. The results of the estimated coefficient of mixing for the small and large hole diameter trays show that the extent of liquid mixing on an operating tray generally increased with increasing capacity factor, but decreased with increasing weir loads. This demonstrates that above certain weir loads, the effect of eddy diffusion mechanism on the process of liquid mixing on an operating tray to be negligible.
Resumo:
This study aims to investigate the pyrolysis behaviour of metal-contaminated wood and the combustion properties of char derived from wood pyrolysis. Seven metals (Na, Mg, Ca, Zn, Cd, Pb and Fe(III)) were introduced to willow in cation form by ion-exchange and the thermal behaviour of demineralised samples and samples with additional ash were also investigated. The results show that the char yield increased from 21% to 24-28% and levoglucosan yield in vapour phase decreased from 88% to 62-29% after the addition of inorganic compounds, even though the metal binding capacity of wood varied from one metal ion to another. While char yield seems to be effected mainly by the concentration of the metal ions, levoglucosan yield was more dependent on the ionic species especially when sodium ions were present. When combustion experiments were carried out with char made of the metal enriched wood, two consecutive steps were observed, both effected by the presence of inorganic compounds. The first step was identified as the release and combustion of volatiles, while the second peak of the burning profile is the actual combustion of the fixed carbon. The burnout temperatures, estimated ignition indices and the conversion indicate that the type and not the amount of metal ions were the determining factors during the second step of combustion. © 2012 Published by Elsevier B.V.
Resumo:
Sewage sludge was pyrolysed with 40% mixed wood, 40% rapeseed and 40% straw. The reason for the mixture of different biomass is to investigate the impact of co-pyrolysis on the upper phase of bio-oil in terms of changes to composition, elemental analysis, viscosity, water content, pH, higher heating value and acid number that could impact on their applications. The biomass was pyrolysed in a laboratory at 450 °C and bio-oil was collected from two cooling traps. The bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw was analysed for composition using the gas chromatography mass spectrometry. The upper phase from the co-pyrolysis process was also characterised for ultimate analysis, higher heating values, water content, viscosity, pH and acid number. There was an increase in the amount of upper phase produced with co-pyrolysis of 40% rapeseed. It was also found that the upper phase from sewage sludge with mixed wood has the highest viscosity, acid number and lowest pH. The bio-oil containing 40% straw was found to have a pH of 6.5 with a very low acid number while the 40% rapeseed was found to have no acid number. Sewage sludge with 40% rapeseed was found to have the highest energy content of 34.8 MJ/kg, 40% straw has 32.5 MJ/kg while the 40% mixed wood pyrolysis oil has the lowest energy content of 31.3 MJ/kg. The 40% rapeseed fraction was found to have the highest water content of 8.2% compared to other fractions.
Resumo:
A theoretical model for the transport phenomena in an air gap membrane distillation is presented. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The slip flow occurs due to the hydrophobic properties of the membrane. The slip boundary condition applied on the feed saline solution-membrane interface is taken into consideration showing its effects on process parameters particularly permeate flow, heat transfer coefficient and thermal efficiency. The theoretical model was validated with available experimental data and was found to be in good agreement especially when the slip condition is introduced. Increasing slip length from zero to 200 μm was found to increase the permeate flux and the thermal efficiency by 33% and 1.7% respectively.
Resumo:
A multistage distillation column in which mass transfer and a reversible chemical reaction occurred simultaneously, has been investigated to formulate a technique by which this process can be analysed or predicted. A transesterification reaction between ethyl alcohol and butyl acetate, catalysed by concentrated sulphuric acid, was selected for the investigation and all the components were analysed on a gas liquid chromatograph. The transesterification reaction kinetics have been studied in a batch reactor for catalyst concentrations of 0.1 - 1.0 weight percent and temperatures between 21.4 and 85.0 °C. The reaction was found to be second order and dependent on the catalyst concentration at a given temperature. The vapour liquid equilibrium data for six binary, four ternary and one quaternary systems are measured at atmospheric pressure using a modified Cathala dynamic equilibrium still. The systems with the exception of ethyl alcohol - butyl alcohol mixtures, were found to be non-ideal. Multicomponent vapour liquid equilibrium compositions were predicted by a computer programme which utilised the Van Laar constants obtained from the binary data sets. Good agreement was obtained between the predicted and experimental quaternary equilibrium vapour compositions. Continuous transesterification experiments were carried out in a six stage sieve plate distillation column. The column was 3" in internal diameter and of unit construction in glass. The plates were 8" apart and had a free area of 7.7%. Both the liquid and vapour streams were analysed. The component conversion was dependent on the boilup rate and the reflux ratio. Because of the presence of the reaction, the concentration of one of the lighter components increased below the feed plate. In the same region a highly developed foam was formed due to the presence of the catalyst. The experimental results were analysed by the solution of a series of simultaneous enthalpy and mass equations. Good agreement was obtained between the experimental and calculated results.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Removal of dissolved salts and toxic chemicals in water, especially at a few parts per million (ppm) levels is one of the most difficult problems. There are several methods used for water purification. The choice of the method depends mainly on the level of feed water salinity, source of energy and type of contaminants present. Distillation is an age old method which can remove all types of dissolved impurities from contaminated water. In multiple effect distillation (MED) latent heat of steam is recycled several times to produce many units of distilled water with one unit of primary steam input. This is already being used in large capacity plants for treating sea water. But the challenge lies in designing a system for small scale operations that can treat a few cubic meters of water per day, especially suitable for rural communities where the available water is brackish. A small scale MED unit with an extendable number of effects has been designed and analyzed for optimum yield in terms of total distillate produced. © 2010 Elsevier B.V.
Resumo:
The viscosity of four aged bio-oil samples was measured experimentally at various shear rates and temperatures using a rotational viscometer. The experimental bio-oils were derived from fast pyrolysis of beech wood at 450, 500, and 550 °C and Miscanthus at 500 °C (in this work, they were named as BW1, BW2, BW3, and MXG) in a bubbling fluidized bed reactor. The viscosity of all bio-oils was kept constant at various shear rates at the same temperature, which indicated that they were Newtonian fluids. The viscosity of bio-oils was strongly dependent upon the temperature, and with the increase of the temperature from 30 to 80 °C, the viscosity of BW1, BW2, BW3, and MXG decreased by 90.7, 93.3, 92.6, and 90.2%, respectively. The Arrhenius viscosity model, which has been commonly used to represent the temperature dependence of the viscosity of many fluids, did not fit the viscosity-temperature experimental data of all bio-oils very well, especially in the low- and high-temperature regions. For comparison, the Williams-Landel-Ferry (WLF) model was also used. The results showed that the WLF model gave a very good description of the viscosity-temperature relationship of each bio-oil with very small residuals and the BW3 bio-oil had the strongest viscosity-temperature dependence.