18 resultados para Wind energy integration
Resumo:
High-power and high-voltage gain dc-dc converters are key to high-voltage direct current (HVDC) power transmission for offshore wind power. This paper presents an isolated ultra-high step-up dc-dc converter in matrix transformer configuration. A flyback-forward converter is adopted as the power cell and the secondary side matrix connection is introduced to increase the power level and to improve fault tolerance. Because of the modular structure of the converter, the stress on the switching devices is decreased and so is the transformer size. The proposed topology can be operated in column interleaved modes, row interleaved modes, and hybrid working modes in order to deal with the varying energy from the wind farm. Furthermore, fault-tolerant operation is also realized in several fault scenarios. A 400-W dc-dc converter with four cells is developed and experimentally tested to validate the proposed technique, which can be applied to high-power high-voltage dc power transmission.
Resumo:
Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush (Juncus effuses) and bracken (Pteridium aquilinum) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 105 tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.
The reality of cross-disciplinary energy research in the United Kingdom:a social science perspective
Resumo:
Cross-disciplinary research is essential in understanding and reducing energy usage, however the reality of this collaboration comes with many challenges. This paper provides an insight into the integration of social science in energy research, drawing on the expertise and first hand experiences of a range of social science researchers (predominantly Early Career Researchers (ECRs)) working on UK cross-disciplinary projects in energy demand. These researchers, participants in a workshop dedicated to understanding the integration of social science in energy research, identified four groups of challenges to successful integration: Differing expectations of the role of social scientists; Working within academia; Feeling like a valued member of the team; and Communicating and comprehension between disciplines. Suggestions of how to negotiate those challenges included: Management and planning; Increasing contact; Sharing experience; and Understanding team roles. The paper offers a definition of ‘success’ in cross-disciplinary energy research from the perspective of social science ECRs, comprising external, internal and personal components. Using the logics of interdisciplinarity, this paper suggests that integration of the social sciences in the projects discussed may be partial at best and highlights a need to recognise the challenges ECRs face, in order to achieve full integration and equality of disciplines.