27 resultados para Weighted graphs
Resumo:
Renewable energy forms have been widely used in the past decades highlighting a "green" shift in energy production. An actual reason behind this turn to renewable energy production is EU directives which set the Union's targets for energy production from renewable sources, greenhouse gas emissions and increase in energy efficiency. All member countries are obligated to apply harmonized legislation and practices and restructure their energy production networks in order to meet EU targets. Towards the fulfillment of 20-20-20 EU targets, in Greece a specific strategy which promotes the construction of large scale Renewable Energy Source plants is promoted. In this paper, we present an optimal design of the Greek renewable energy production network applying a 0-1 Weighted Goal Programming model, considering social, environmental and economic criteria. In the absence of a panel of experts Data Envelopment Analysis (DEA) approach is used in order to filter the best out of the possible network structures, seeking for the maximum technical efficiency. Super-Efficiency DEA model is also used in order to reduce the solutions and find the best out of all the possible. The results showed that in order to achieve maximum efficiency, the social and environmental criteria must be weighted more than the economic ones.
Resumo:
DBpedia has become one of the major sources of structured knowledge extracted from Wikipedia. Such structures gradually re-shape the representation of Topics as new events relevant to such topics emerge. Such changes make evident the continuous evolution of topic representations and introduce new challenges to supervised topic classification tasks, since labelled data can rapidly become outdated. Here we analyse topic changes in DBpedia and propose the use of semantic features as a more stable representation of a topic. Our experiments show promising results in understanding how the relevance of features to a topic changes over time.
Resumo:
This study surveys the ordered weighted averaging (OWA) operator literature using a citation network analysis. The main goals are the historical reconstruction of scientific development of the OWA field, the identification of the dominant direction of knowledge accumulation that emerged since the publication of the first OWA paper, and to discover the most active lines of research. The results suggest, as expected, that Yager's paper (IEEE Trans. Systems Man Cybernet, 18(1), 183-190, 1988) is the most influential paper and the starting point of all other research using OWA. Starting from his contribution, other lines of research developed and we describe them.
Resumo:
Binocular combination for first-order (luminancedefined) stimuli has been widely studied, but we know rather little about this binocular process for spatial modulations of contrast (second-order stimuli). We used phase-matching and amplitude-matching tasks to assess binocular combination of second-order phase and modulation depth simultaneously. With fixed modulation in one eye, we found that binocularly perceived phase was shifted, and perceived amplitude increased almost linearly as modulation depth in the other eye increased. At larger disparities, the phase shift was larger and the amplitude change was smaller. The degree of interocular correlation of the carriers had no influence. These results can be explained by an initial extraction of the contrast envelopes before binocular combination (consistent with the lack of dependence on carrier correlation) followed by a weighted linear summation of second-order modulations in which the weights (gains) for each eye are driven by the first-order carrier contrasts as previously found for first-order binocular combination. Perceived modulation depth fell markedly with increasing phase disparity unlike previous findings that perceived first-order contrast was almost independent of phase disparity. We present a simple revision to a widely used interocular gain-control theory that unifies first- and second-order binocular summation with a single principle-contrast-weighted summation-and we further elaborate the model for first-order combination. Conclusion: Second-order combination is controlled by first-order contrast.
Resumo:
A localized method to distribute paths on random graphs is devised, aimed at finding the shortest paths between given source/destination pairs while avoiding path overlaps at nodes. We propose a method based on message-passing techniques to process global information and distribute paths optimally. Statistical properties such as scaling with system size and number of paths, average path-length and the transition to the frustrated regime are analyzed. The performance of the suggested algorithm is evaluated through a comparison against a greedy algorithm. © 2014 IOP Publishing Ltd and SISSA Medialab srl.
Resumo:
Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.
Resumo:
Social media has become an effective channel for communicating both trends and public opinion on current events. However the automatic topic classification of social media content pose various challenges. Topic classification is a common technique used for automatically capturing themes that emerge from social media streams. However, such techniques are sensitive to the evolution of topics when new event-dependent vocabularies start to emerge (e.g., Crimea becoming relevant to War Conflict during the Ukraine crisis in 2014). Therefore, traditional supervised classification methods which rely on labelled data could rapidly become outdated. In this paper we propose a novel transfer learning approach to address the classification task of new data when the only available labelled data belong to a previous epoch. This approach relies on the incorporation of knowledge from DBpedia graphs. Our findings show promising results in understanding how features age, and how semantic features can support the evolution of topic classifiers.
Resumo:
In this paper, we investigate the use of manifold learning techniques to enhance the separation properties of standard graph kernels. The idea stems from the observation that when we perform multidimensional scaling on the distance matrices extracted from the kernels, the resulting data tends to be clustered along a curve that wraps around the embedding space, a behavior that suggests that long range distances are not estimated accurately, resulting in an increased curvature of the embedding space. Hence, we propose to use a number of manifold learning techniques to compute a low-dimensional embedding of the graphs in an attempt to unfold the embedding manifold, and increase the class separation. We perform an extensive experimental evaluation on a number of standard graph datasets using the shortest-path (Borgwardt and Kriegel, 2005), graphlet (Shervashidze et al., 2009), random walk (Kashima et al., 2003) and Weisfeiler-Lehman (Shervashidze et al., 2011) kernels. We observe the most significant improvement in the case of the graphlet kernel, which fits with the observation that neglecting the locational information of the substructures leads to a stronger curvature of the embedding manifold. On the other hand, the Weisfeiler-Lehman kernel partially mitigates the locality problem by using the node labels information, and thus does not clearly benefit from the manifold learning. Interestingly, our experiments also show that the unfolding of the space seems to reduce the performance gap between the examined kernels.
Resumo:
In this paper, we use the quantum Jensen-Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen-Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated with a continuous-time quantum walk over each graph being compared. In particular, we adopt the closed form solution of the density matrix introduced in Rossi et al. (2013) [27,28] to reduce the computational complexity and to avoid the cumbersome task of simulating the quantum walk evolution explicitly. Next, we compare the mixed states represented by the density matrices using the quantum Jensen-Shannon divergence. With the quantum states for a pair of graphs described by their density matrices to hand, the quantum graph kernel between the pair of graphs is defined using the quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets from both bioinformatics and computer vision. The experimental results demonstrate the effectiveness of the proposed quantum graph kernel.
Resumo:
The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs.
Resumo:
Kernel methods provide a way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semidefinite kernel. In this paper, we propose a novel kernel on unattributed graphs where the structure is characterized through the evolution of a continuous-time quantum walk. More precisely, given a pair of graphs, we create a derived structure whose degree of symmetry is maximum when the original graphs are isomorphic. With this new graph to hand, we compute the density operators of the quantum systems representing the evolutions of two suitably defined quantum walks. Finally, we define the kernel between the two original graphs as the quantum Jensen-Shannon divergence between these two density operators. The experimental evaluation shows the effectiveness of the proposed approach. © 2013 Springer-Verlag.
Resumo:
In this paper we propose a prototype size selection method for a set of sample graphs. Our first contribution is to show how approximate set coding can be extended from the vector to graph domain. With this framework to hand we show how prototype selection can be posed as optimizing the mutual information between two partitioned sets of sample graphs. We show how the resulting method can be used for prototype graph size selection. In our experiments, we apply our method to a real-world dataset and investigate its performance on prototype size selection tasks. © 2012 Springer-Verlag Berlin Heidelberg.