24 resultados para Vaccin anti-cancer
Resumo:
Cachexia is a wasting phenomenon that often accompanies malignant disease. Its manifestation is associated with shortened survival and reduced responsiveness to anti-tumour therapy and as yet there is no established, effective amelioratory treatment. The MAC 16 model of cancer cachexia has been shown by many studies to closely mirror the human condition. Thus, cachexia is mediated by the presence of a small, slow-growing solid tumour that is mainly resistant to chemotherapy. In addition, the condition is largely attributable to aberrations in metabolic processes, while weight loss due to anorexia is negligible. Cachexia induced by the MAC 16 tumour, has been shown to be mediated by the production of tumour-derived circulatory catabolic factors, and the further elucidation of the structure of these molecules contributes towards the main content of this report. Thus, a factor with in vitro lipid-mobilising activity has been purified from the MAC 16 tumour, and has been found to have similarities to tumour-derived lipolytic factors published to date. Further work demonstrated that this factor was also purifiable from the urine of a patient with pancreatic cancer, and that it was capable of inducing weight loss in non tumour-bearing mice. Sequence analysis of the homogeneous material revealed an identity to Zn-α-2-glycoprotein, the significance of which is discussed. An additional factor, first detected as a result of its specific reactivity with a monoclonal antibody produced by fusion of splenocytes from MAC 16 tumour-bearing mice with mouse BALB/c myeloma cells, was identified as a co-purificant during studies to isolate the lipolytic factor. Subsequent purification of this material to homogeneity resulted in the determination of 18 of the N-terminal amino acids and revealed the highly glycosylated nature of its structure. Thus, this material (P24) was found to have an apparent molecular mass of 24kD of which 2kD was due to protein, while the remainder (92%) was due to the presence of carbohydrate groups. Sequence analysis of the protein core of P24 revealed an identity with Streptococcal pre-absorbing antigen (PA-Ag) in 11 of the amino acids, and the significance of this is discussed. P24 was shown to induce muscle protein breakdown in vitro and to induce cachexia in vivo, as measured by the depletion of fat (29%) and muscle (14%) tissue in the absence of a reduction of food and water intake. Further studies revealed that the same material was purifiable from the urine of patients with pancreatic cancer and was found to be detectable in the urine of cancer patients with weight loss greater than l.Skg/month. Thus, cachexia induced by the MAC 16 tumour in mice and by malignant disease in humans may be induced by similar mediators. Attempts to isolate the gene for P24 using information provided by the N-terminal protein sequence were unsuccessful. This was probably due to the low abundance o[ the material, as determined by protein purification studies; and the nature of the amino acids of the N-terminal sequence, which conferred a high degree o[ degeneracy to the oligonucleotides designed for the polymerase chain reaction.
Resumo:
Cancer cachexia is characterised by selective depletion of skeletal muscle protein reserves. The ubiquitin-proteasome proteolytic pathway has been shown to be responsible for muscle wasting in a range of cachectic conditions including cancer cachexia. To establish the importance of this pathway in muscle wasting during cancer (and sepsis), a quantitative competitive RT-PCR (QcRT-PCR) method was developed to measure the mRNA levels of the proteasome sub units C2a and C5ß and the ubiquitin-conjugating enzyme E214k. Western blotting was also used to measure the 20S proteasome and E214k protein expression. In vivo studies in mice bearing a cachexia inducing murine colon adenocarcinoma (MAC16) demonstrated the effect of progressive weight loss on the mRNA and protein expression for 20S proteasome subunits, as well as the ubiquitin-conjugating enzyme, E214k, in gastrocnemius and pectoral muscles. QcRT-PCR measurements showed a good correlation between expression of the proteasome subunits (C2 and CS) and the E214k enzyme mRNA and weight loss in gastrocnemius muscle, where expression increased with increasing weight loss followed by a decrease in expression at higher weight losses (25-27%). Similar results were obtained in pectoral muscles, but with the expression being several fold lower in comparison to that in gastrocnemius muscle, reflecting the different degrees of protein degradation in the two muscles during the process of cancer cachexia. Western blot analysis of 20S and E214k protein expression followed a similar pattern with respect to weight loss as that found with mRNA. In addition, mRNA and protein expression of the 20S proteasome subunits and E214k enzyme was measured in biopsies from cachectic cancer patients, which also showed a good correlation between weight loss and proteasome expression, demonstrating a progressive increase in expression of the proteasome subunits and E214k mRNA and protein in cachectic patients with progressively increasing weight loss.The effect of the cachexia-inducing tumour product PIF (proteolysis inducing factor) and 15-hydroxyeicosatetraenoic acid (15-HETE), the arachidoinic acid metabolite (thought to be the intracellular transducer of PIF action) has also been determined. Using a surrogate model system for skeletal muscle, C2C12 myotubes in vitro, it was shown that both PIF and 15-HETE increased proteasome subunit expression (C2a and C5ß) as well as the E214k enzyme. This increase gene expression was attenuated by preincubation with EPA or the 15-lipoxygenase inhibitor CV-6504; immunoblotting also confirmed these findings. Similarly, in sepsis-induced cachexia in NMRI mice there was increased mRNA and protein expression of the 20S proteasome subunits and the E214k enzyme, which was inhibited by EPA treatment. These results suggest that 15-HETE is the intracellular mediator for PIF induced protein degradation in skeletal muscle, and that elevated muscle catabolism is accomplished through upregulation of the ubiquitin-proteasome-proteolytic pathway. Furthermore, both EPA and CV -6504 have shown anti-cachectic properties, which could be used in the future for the treatment of cancer cachexia and other similar catabolic conditions.
The role of zinc in the anti-tumour and anti-cachectic activity of D-myo-inositol 1,2,6-triphosphate
Resumo:
Background: D-myo-inositol-1,2,6-triphosphate (a-trinositol, AT) is a polyanionic molecule capable of chelating divalent metal ions with anti-tumour and anti-cachectic activity in a murine model. Methods: To investigate the role of zinc in this process, mice bearing cachexia-inducing MAC16 tumour were treated with AT, with or without concomitant administration of ZnSO4. Results: At a dose of 40mgkg-1, AT effectively attenuated both weight loss and growth of the MAC16 tumour, and both effects were attenuated by co-administration of Zn2+. The concentration of zinc in gastrocnemius muscle increased with increasing weight loss, whereas administration of AT decreased the levels of zinc in plasma, skeletal muscle and tumour, which were restored back to control values after administration of ZnSO4. Conclusion: These results suggest that zinc is important in both tumour growth and cachexia in this animal model.
Resumo:
Regular aspirin intake is associated with a reduction in the incidence of colorectal cancer. Aspirin has been shown to be cytotoxic to colorectal cancer cells in vitro. The molecular basis for this cytotoxicity is controversial, with a number of competing hypotheses in circulation. One suggestion is that the protective effect is related to the induction of expression of the DNA mismatch repair (MMR) proteins hMLH1, hMSH2, hMSH6 and hPMS2 in DNA MMR proficient cells. We report that treatment of the DNA MMR competent/p53 mutant colorectal cancer cell line SW480 with 1 mM aspirin for 48 h caused changes in mRNA expression of several key genes involved in DNA damage signalling pathways, including a significant down-regulation in transcription of the genes ATR, BRCA1 and MAPK12. Increases in the transcription of XRCC3 and GADD45alpha genes are also reported. Regulation of these genes could potentially have profound effects on colorectal cancer cells and may play a role in the observed chemo-protective effect of aspirin in vivo. Although a correlation was not seen between transcript and protein levels of ATR, BRCA1 and GADD45alpha, an increase in XRCC3 encoded protein expression upon aspirin treatment in SW480 cells was observed by immunoblotting, immunofluorescence and immunohistochemical analysis. This is the first report of XRCC3 gene transcription and encoded protein expression being susceptible to exposure to the non-steroidal anti-inflammatory drug, aspirin. Furthermore, this study indicates that alterations in gene transcription seen in microarray studies must be verified at the protein level.
Resumo:
Most of the gemcitabine (dFdC) resistant cell lines manifested high NF?B activity. The NF?B activity can be induced by dFdC and 5-FU exposure. The chemosensitizing effect of disulfiram (DS), an anti-alcoholism drug and NF?B inhibitor, and copper (Cu) on the chemoresistant cell lines was examined. The DS/Cu complex significantly enhanced the cytotoxicity of dFdC (resistant cells: 12.2–1085-fold) and completely reversed the dFdC resistance in the resitant cell lines. The dFdC-induced NF?B activity was markedly inhibited by DS/Cu complex. The data from this study indicated that DS may be used in clinic to improve the therapeutic effect of dFdC in breast and colon cancer patients.
Resumo:
Adipose tissue of mice bearing a cachexia-inducing murine tumour (MAC16) shows increased expression of zinc-α2-glycoprotein (ZAG), a lipolytic factor thought to be responsible for the increased lipolysis. The anti-cachectic agent eicosapentaenoic acid (EPA) (0.5 g/kg) attenuated the loss of body weight in mice bearing the MAC16 tumour, and this was accompanied by downregulation of ZAG expression in both white and brown adipose tissue, as determined by Western blotting. Glucocorticoids may be responsible for the increased ZAG expression in adipose tissue. Dexamethasone (1.68 μM) stimulated lipolysis in 3T3-L1 adipocytes, and this effect was attenuated by EPA (50 μM). In addition the lipolytic action of dexamethasone was attenuated by anti-ZAG antibody, suggesting that the induction of lipolysis was mediated through an increase in ZAG expression. This was confirmed by Western blotting, which showed that dexamethasone (1.68 μM) induced a two-fold increase in ZAG expression in both cells and media, and that this was attenuated by EPA (50 μM). These results suggest that EPA may preserve adipose tissue in cachectic mice by downregulation of ZAG expression through interference with glucocorticoid signalling. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastrointestinal cancer cell lines. Similar actions on normal gastric epithelial cells could contribute to NSAID gastropathy. The present work therefore compared the actions of diclofenac, ibuprofen, indomethacin, and the cyclo-oxygenase-2 selective inhibitor, NS-398, on a primary culture of guinea-pig gastric mucous epithelial cells. Cell number was assessed by staining with crystal violet. Apoptotic activity was determined by condensation and fragmentation of nuclei and by assay of caspase-3-like activity. Necrosis was evaluated from release of cellular enzymes. Ibuprofen (250 μM for 24 h) promoted cell loss, and apoptosis, under both basal conditions and when apoptosis was increased by 25 μM N-Hexanoyl-D-sphingosine (C6-ceramide). Diclofenac (250 μM for 24 h) reduced the proportion of apoptotic nuclei from 5.2 to 2.1%, and caused inhibition of caspase-3-like activity, without causing necrosis under basal conditions. No such reduction in apoptotic activity was evident in the presence of 25 μM C6-ceramide. The inhibitory effect of diclofenac on basal caspase-3-like activity was also exhibited by the structurally similar mefenamic and flufenamic acids (1–250 μM), but not by niflumic acid. Inhibition of superoxide production by the cells increased caspase-3-like activity, but the inhibitory action of diclofenac on caspase activity remained. Diclofenac did not affect superoxide production. Diclofenac inhibited caspase-3-like activity in cell homogenates and also inhibited human recombinant caspase-3. In conclusion, NSAIDs vary in their effect on apoptotic activity in a primary culture of guinea-pig gastric mucous epithelial cells, and the inhibitory effect of diclofenac on basal apoptosis could involve an action on caspase activity.
Resumo:
Background: We and others have identified the aldo-keto reductase AKR1C3 as a potential drug target in prostate cancer, breast cancer and leukaemia. As a consequence, significant effort is being invested in the development of AKR1C3-selective inhibitors. Methods: We report the screening of an in-house drug library to identify known drugs that selectively inhibit AKR1C3 over the closely related isoforms AKR1C1, 1C2 and 1C4. This screen initially identified tetracycline as a potential AKR1C3-selective inhibitor. However, mass spectrometry and nuclear magnetic resonance studies identified that the active agent was a novel breakdown product (4-methyl(de-dimethylamine)-tetracycline (4-MDDT)). Results: We demonstrate that, although 4-MDDT enters AML cells and inhibits their AKR1C3 activity, it does not recapitulate the anti-leukaemic actions of the pan-AKR1C inhibitor medroxyprogesterone acetate (MPA). Screens of the NCI diversity set and an independently curated small-molecule library identified several additional AKR1C3-selective inhibitors, none of which had the expected anti-leukaemic activity. However, a pan AKR1C, also identified in the NCI diversity set faithfully recapitulated the actions of MPA. Conclusions: In summary, we have identified a novel tetracycline-derived product that provides an excellent lead structure with proven drug-like qualities for the development of AKR1C3 inhibitors. However, our findings suggest that, at least in leukaemia, selective inhibition of AKR1C3 is insufficient to elicit an anticancer effect and that multiple AKR1C inhibition may be required. © 2014 Cancer Research UK. All rights reserved.
Resumo:
Disulfiram (DS), an anti-alcoholism drug, shows very strong cytotoxicity in many cancer types. However its clinical application in cancer treatment is limited by the very short half-life in the bloodstream. In this study, we developed a poly lactic-co-glycolic acid (PLGA)-encapsulated DS protecting DS from the degradation in the bloodstream. The newly developed DS-PLGA was characterized. The DS-PLGA has very satisfactory encapsulation efficiency, drug-loading content and controlled release rate in vitro. PLGA encapsulation extended the half-life of DS from shorter than 2 minutes to 7 hours in serum. In combination with copper, DS-PLGA significantly inhibited the liver cancer stem cell population. CI-isobologram showed a remarkable synergistic cytotoxicity between DS-PLGA and 5-FU or Sorafenib. It also demonstrated very promising anticancer efficacy and antimetastatic effect in liver cancer mouse model. Both DS and PLGA are FDA approved products for clinical application. Our study may lead to repositioning of DS into liver cancer treatment.