32 resultados para Unified Power Quality Conditioner (UPQC)
Resumo:
In an Arab oil producing country in the Middle East such as Kuwait, Oil industry is considered as the main and most important industry of the country. This industry’s importance emerged from the significant role it plays in both country’s national economy and also global economy. Moreover, Oil industry’s criticality comes from its interconnectivity with national security and power in the Middle East region. Hence, conducting this research in this crucial industry had certainly added values to companies in this industry as it investigated thoroughly the main components of the TQM implementation process and identified which components affects significantly TQM’s implementation and its gained business results. In addition, as the Oil sector is a large sector that is known for its richness of employees with different national cultures and backgrounds. Thus, this culture-heterogeneous industry seems to be the most appropriate environment to address and satisfy a need in the literature to investigate the national culture values’ effects on TQM implementation process. Furthermore, this research has developed a new conceptual model of TQM implementation process in the Kuwaiti Oil industry that applies in general to operations and productions organizations at the Kuwaiti business environment and in specific to organizations in the Oil industry, as well it serves as a good theoretical model for improving operations and production level of the oil industry in other developing and developed countries. Thus, such research findings minimized the literature’s gap found the limited amount of empirical research of TQM implementation in well-developed industries existing in an Arab, developing countries and specifically in Kuwait, where there was no coherent national model for a universal TQM implementation in the Kuwaiti Oil industry in specific and Kuwaiti business environment in general. Finally, this newly developed research framework, which emerged from the literature search, was validated by rigorous quantitative analysis tools including SPSS and Structural Equation Modeling. The quantitative findings of questionnaires collected were supported by the qualitative findings of interviews conducted.
Resumo:
The tear film, cornea and lens dictate the refractive power of the eye and the retinal image quality is principally defined by diffraction, whole eye wavefront error, scatter, and chromatic aberration. Diffraction and wave aberration are fundamentally pupil diameter dependent; however scatter can be induced by refractive surgery and in the normal ageing eye becomes an increasingly important factor defining retinal image quality. The component of visual quality most affected by the tear film, refractive surgery and multifocal contact and intraocular lenses is the wave aberration of the eye. This body of work demonstrates the effects of each of these anomalies on the visual quality of the eye. When assessing normal or borderline self-diagnosed dry eye subjects using aberrometry, combining lubricating eye drops and spray does not offer any benefit over individual products. However, subjects perceive a difference in comfort for all interventions after one hour. Total higher order aberrations increase after laser assisted sub-epithelial keratectomy performed using a solid-state laser on myopes, but this causes no significant decrease in contrast sensitivity or increase in glare disability. Mean sensitivity and reliability indices for perimetry were comparable to pre-surgery results. Multifocal contact lenses and intraocular lenses are designed to maximise vision when the patient is binocular, so any evaluation of the eyes individually is confounded by reduced individual visual acuity and visual quality. Different designs of aspheric multifocal contact lenses do not provide the same level of visual quality. Multifocal contact lenses adversely affect mean deviation values for perimetry and this should be considered when screening individuals with multifocal contact or intraocular lenses. Photographic image quality obtained through a multifocal contact or intraocular lens appears to be unchanged. Future work should evaluate the effect of these anomalies in combination; with the aim of providing the best visual quality possible and supplying normative data for screening purposes.
Resumo:
Purpose: Energy security is a major concern for India and many rural areas remain un-electrified. Thus, innovations in sustainable technologies to provide energy services are required. Biomass and solar energy in particular are resources that are widely available and underutilised in India. This paper aims to provide an overview of a methodology that was developed for designing and assessing the feasibility of a hybrid solar-biomass power plant in Gujarat. Design/methodology/approach: The methodology described is a combination of engineering and business management studies used to evaluate and design solar thermal collectors for specific applications and locations. For the scenario of a hybrid plant, the methodology involved: the analytical hierarchy process, for solar thermal technology selection; a cost-exergy approach, for design optimisation; quality function deployment, for designing and evaluating a novel collector - termed the elevation linear Fresnel reflector (ELFR); and case study simulations, for analysing alternative hybrid plant configurations. Findings: The paper recommended that for a hybrid plant in Gujarat, a linear Fresnel reflector of 14,000 m2 aperture is integrated with a 3 tonne per hour biomass boiler, generating 815 MWh per annum of electricity for nearby villages and 12,450 tonnes of ice per annum for local fisheries and food industries. However, at the expense of a 0.3 ¢/kWh increase in levelised energy costs, the ELFR can increase savings of biomass (100 t/a) and land (9 ha/a). Research limitations/implications: The research reviewed in this paper is primarily theoretical and further work will need to be undertaken to specify plant details such as piping layout, pump sizing and structure, and assess plant performance during real operational conditions. Originality/value: The paper considers the methodology adopted proved to be a powerful tool for integrating technology selection, optimisation, design and evaluation and promotes interdisciplinary methods for improving sustainable engineering design and energy management. © Emerald Group Publishing Limited.
Resumo:
We present experimental results for the effect of an increased supervisory signal power in a high-loss loopback supervisory system in an optically amplified wavelength division multiplexing (WDM) transmission line. The study focuses on the investigation of increasing the input power for the supervisory signal and the effect on the co-propagating WDM data signals using different channel spacing. This investigation is useful for determining the power limitation of the supervisory signal if extra power is needed to improve the monitoring. The study also shows the effect of spacing on the quality of the supervisory signal itself because of interaction with adjacent data signals. © The Institution of Engineering and Technology 2014.
Resumo:
Aston University has been working closely with key companies from within the electricity industry for several years, initially in the development and delivery of an employer-led foundation degree programme in electrical power engineering, and more recently, in the development of a progression pathway for foundation degree graduates to achieve a Bachelors-level qualification. The Electrical Power Engineering foundation degree was developed in close consultation with the industry such that the programme is essentially owned by the sector. Programme delivery has required significant shifts away from traditional HE teaching patterns whilst maintaining the quality requirement and without compromise of the academic degree standard. Block teaching (2-week slots), partnership delivery, off-site student support and work-based learning have all presented challenges as we have sought to maximise the student learning experience and to ensure that the graduates are fit-for purpose and "hit the ground running" within a defined career structure for sponsoring companies. This paper will outline the skills challenges facing the sector; describe programme developments and delivery challenges; before articulating some observations and conclusions around programme effectiveness, impact of foundation degree graduates in the workplace and the significance of the close working relationship with key sponsoring companies. Copyright © 2012, September.
Resumo:
Spark-ignited (SI) gas engines are for the use of fuel gas only and are limited to the flammable range of the gas; this means the range of a concentration of a gas or vapor that will burn after ignition. Fuel gas like syngas from gasification or biogas must meet high quality and chemical purity standards for combustion in SI gas engines. Considerable effort has been devoted to fast pyrolysis over the years and some of the product oils have been tested in diesel or dual-fuel engines since 1993. For biogas conversion, usually dual-fuel engines are used, while for synthesis gas the use of gas engines is more common. The trials using wood derived pyrolysis oil from fast pyrolysis have not yet been a success story and these approaches have usually failed due to the high corrosivity of the pyrolysis oils.
Resumo:
Background/Aims: To develop and assess the psychometric validity of a Chinese language Vision Health related quality-of-life (VRQoL) measurement instrument for the Chinese visually impaired. Methods: The Low Vision Quality of Life Questionnaire (LVQOL) was translated and adapted into the Chinese-version Low Vision Quality of Life Questionnaire (CLVQOL). The CLVQOL was completed by 100 randomly selected people with low vision (primary group) and 100 people with normal vision (control group). Ninety-four participants from the primary group completed the CLVQOL a second time 2 weeks later (test-retest group). The internal consistency reliability, test-retest reliability, item-internal consistency, item-discrimination validity, construct validity and discriminatory power of the CLVQOL were calculated. Results: The review committee agreed that the CLVQOL replicated the meaning of the LVQOL and was sensitive to cultural differences. The Cronbach's α coefficient and the split-half coefficient for the four scales and total CLVQOL scales were 0.75-0.97. The test-retest reliability as estimated by the intraclass correlations coefficient was 0.69-0.95. Item-internal consistency was >0.4 and item-discrimination validity was generally <0.40. The Varimax rotation factor analysis of the CLVQOL identified four principal factors. the quality-of-life rating of four subscales and the total score of the CLVQOL of the primary group were lower than those of the Control group, both in hospital-based subjects and community-based subjects. Conclusion: The CLVQOL Chinese is a culturally specific vision-related quality-of-life measure instrument. It satisfies conventional psychometric criteria, discriminates visually healthy populations from low vision patients and may be valuable in screening the local community as well as for use in clinical practice or research. © Springer 2005.
Resumo:
We present experimental results for the effect of an increased supervisory signal power in a high-loss loopback supervisory system in an optically amplified wavelength division multiplexing (WDM) transmission line. The study focuses on the investigation of increasing the input power for the supervisory signal and the effect on the co-propagating WDM data signals using different channel spacing. This investigation is useful for determining the power limitation of the supervisory signal if extra power is needed to improve the monitoring. The study also shows the effect of spacing on the quality of the supervisory signal itself because of interaction with adjacent data signals.
Resumo:
We present experimental results for the effect of an increased supervisory signal power in a high-loss loopback supervisory system in an optically amplified wavelength division multiplexing (WDM) transmission line. The study focuses on the investigation of increasing the input power for the supervisory signal and the effect on the co-propagating WDM data signals using different channel spacing. This investigation is useful for determining the power limitation of the supervisory signal if extra power is needed to improve the monitoring. The study also shows the effect of spacing on the quality of the supervisory signal itself because of interaction with adjacent data signals.
Resumo:
This paper presents an assessment of the technical and economic performance of thermal processes to generate electricity from a wood chip feedstock by combustion, gasification and fast pyrolysis. The scope of the work begins with the delivery of a wood chip feedstock at a conversion plant and ends with the supply of electricity to the grid, incorporating wood chip preparation, thermal conversion, and electricity generation in dual fuel diesel engines. Net generating capacities of 1–20 MWe are evaluated. The techno-economic assessment is achieved through the development of a suite of models that are combined to give cost and performance data for the integrated system. The models include feed pretreatment, combustion, atmospheric and pressure gasification, fast pyrolysis with pyrolysis liquid storage and transport (an optional step in de-coupled systems) and diesel engine or turbine power generation. The models calculate system efficiencies, capital costs and production costs. An identical methodology is applied in the development of all the models so that all of the results are directly comparable. The electricity production costs have been calculated for 10th plant systems, indicating the costs that are achievable in the medium term after the high initial costs associated with novel technologies have reduced. The costs converge at the larger scale with the mean electricity price paid in the EU by a large consumer, and there is therefore potential for fast pyrolysis and diesel engine systems to sell electricity directly to large consumers or for on-site generation. However, competition will be fierce at all capacities since electricity production costs vary only slightly between the four biomass to electricity systems that are evaluated. Systems de-coupling is one way that the fast pyrolysis and diesel engine system can distinguish itself from the other conversion technologies. Evaluations in this work show that situations requiring several remote generators are much better served by a large fast pyrolysis plant that supplies fuel to de-coupled diesel engines than by constructing an entire close-coupled system at each generating site. Another advantage of de-coupling is that the fast pyrolysis conversion step and the diesel engine generation step can operate independently, with intermediate storage of the fast pyrolysis liquid fuel, increasing overall reliability. Peak load or seasonal power requirements would also benefit from de-coupling since a small fast pyrolysis plant could operate continuously to produce fuel that is stored for use in the engine on demand. Current electricity production costs for a fast pyrolysis and diesel engine system are 0.091/kWh at 1 MWe when learning effects are included. These systems are handicapped by the typical characteristics of a novel technology: high capital cost, high labour, and low reliability. As such the more established combustion and steam cycle produces lower cost electricity under current conditions. The fast pyrolysis and diesel engine system is a low capital cost option but it also suffers from relatively low system efficiency particularly at high capacities. This low efficiency is the result of a low conversion efficiency of feed energy into the pyrolysis liquid, because of the energy in the char by-product. A sensitivity analysis has highlighted the high impact on electricity production costs of the fast pyrolysis liquids yield. The liquids yield should be set realistically during design, and it should be maintained in practice by careful attention to plant operation and feed quality. Another problem is the high power consumption during feedstock grinding. Efficiencies may be enhanced in ablative fast pyrolysis which can tolerate a chipped feedstock. This has yet to be demonstrated at commercial scale. In summary, the fast pyrolysis and diesel engine system has great potential to generate electricity at a profit in the long term, and at a lower cost than any other biomass to electricity system at small scale. This future viability can only be achieved through the construction of early plant that could, in the short term, be more expensive than the combustion alternative. Profitability in the short term can best be achieved by exploiting niches in the market place and specific features of fast pyrolysis. These include: •countries or regions with fiscal incentives for renewable energy such as premium electricity prices or capital grants; •locations with high electricity prices so that electricity can be sold direct to large consumers or generated on-site by companies who wish to reduce their consumption from the grid; •waste disposal opportunities where feedstocks can attract a gate fee rather than incur a cost; •the ability to store fast pyrolysis liquids as a buffer against shutdowns or as a fuel for peak-load generating plant; •de-coupling opportunities where a large, single pyrolysis plant supplies fuel to several small and remote generators; •small-scale combined heat and power opportunities; •sales of the excess char, although a market has yet to be established for this by-product; and •potential co-production of speciality chemicals and fuel for power generation in fast pyrolysis systems.
Resumo:
Purpose: To evaluate lenses produced by excimer laser ablation of poly(methyl methacrylate) (PMMA) plates. Setting: University research laboratory. Methods: Two Nidek EC-5000 scanning-slit excimer laser systems were used to ablate plane-parallel plates of PMMA. The ablated lenses were examined by focimetry, interferometry, and mechanical surface profiling. Results: The spherical optical powers of the lenses matched the expected values, but the cylindrical powers were generally lower than intended. Interferometry revealed marked irregularity in the surface of negative corrections, which often had a positive “island” at their center. Positive corrections were generally smoother. These findings were supported by the results of mechanical profiling. Contrast sensitivity measurements carried out when observing through ablated lenses whose power had been neutralized with a suitable spectacle lens of opposite sign confirmed that the surface irregularities of the ablated lenses markedly reduced contrast sensitivity over a range of spatial frequencies. Conclusion: Improvements in beam delivery systems seem desirable.
Resumo:
The modulation instability (MI) is one of the main factors responsible for the degradation of beam quality in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI control in passive optics devices. For amplifiers the adiabatic model, assuming locally the Bespalov-Talanov expression for MI growth, is commonly used to estimate the destructive impact of the instability. We present here the exact solution of MI development in amplifiers. We determine the parameters which control the effect of MI in amplifiers and calculate the MI growth rate as a function of those parameters. The safety range of operational parameters is presented. The results of the exact calculations are compared with the adiabatic model, and the range of validity of the latest is determined. We demonstrate that for practical situations the adiabatic approximation noticeably overestimates MI. The additional margin of laser system design is quantified. © 2010 Optical Society of America.
Resumo:
In this work, we report high growth rate of nanocrystalline diamond (NCD) films on silicon wafers of 2 inches in diameter using a new growth regime, which employs high power and CH4/H2/N2/O2 plasma using a 5 kW MPCVD system. This is distinct from the commonly used hydrogen-poor Ar/CH4 chemistries for NCD growth. Upon rising microwave power from 2000 W to 3200 W, the growth rate of the NCD films increases from 0.3 to 3.4 μm/h, namely one order of magnitude enhancement on the growth rate was achieved at high microwave power. The morphology, grain size, microstructure, orientation or texture, and crystalline quality of the NCD samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and micro-Raman spectroscopy. The combined effect of nitrogen addition, microwave power, and temperature on NCD growth is discussed from the point view of gas phase chemistry and surface reactions. © 2011 Elsevier B.V. All rights reserved.
Resumo:
The availability of regular supply has been identified as one of the major stimulants for the growth and development of any nation and is thus important for the economic well-being of a nation. The problems of the Nigerian power sector stems from a lot of factors culminating in her slow developmental growth and inability to meet the power demands of her citizens regardless of the abundance of human and natural resources prevalent in the nation. The research therefore had the main aim of investigating the importance and contributions of risk management to the success of projects specific to the power sector. To achieve this aim it was pertinent to examine the efficacy of risk management process in practice and elucidate the various risks typically associated with projects (Construction, Contractual, Political, Financial, Design, Human resource and Environmental risk factors) in the power sector as well as determine the current situation of risk management practice in Nigeria. To address this factors inhibiting the proficiency of the overarching and prevailing issue which have only been subject to limited in-depth academic research, a rigorous mixed research method was adopted (quantitative and qualitative data analysis). A review of the Nigeria power sector was also carried out as a precursor to the data collection stage. Using purposive sampling technique, respondents were identified and a questionnaire survey was administered. The research hypotheses were tested using inferential statistics (Pearson correlation, Chi-square test, t-test and ANOVA technique) and the findings revealed the need for the development of a new risk management implementation Framework. The proposed Framework was tested within a company project, for interpreting the dynamism and essential benefits of risk management with the aim of improving the project performances (time), reducing the level of fragmentation (quality) and improving profitability (cost) within the Nigerian power sector in order to bridge a gap between theory and practice. It was concluded that Nigeria’s poor risk management practices have prevented it from experiencing strong growth and development. The study however, concludes that the successful implementation of the developed risk management framework may help it to attain this status by enabling it to become more prepared and flexible, to face challenges that previously led to project failures, and thus contributing to its prosperity. The research study provides an original contribution theoretically, methodologically and practically which adds to the project risk management body of knowledge and to the Nigerian power sector.
Resumo:
Four-leg dc-ac power converters are widely used for the power grids to manage grid voltage unbalance caused by the interconnection of single-phase or three-phase unbalanced loads. These converters can further be connected in parallel to increase the overall power rating. The control of these converters poses a particular challenge if they are placed far apart with no links between them (e.g., in islanded microgrids). This challenge is studied in this paper with each four-leg converter designed to have improved common current sharing and selective voltage-quality enhancement. The common current sharing, including zero sequence component, is necessary since loads are spread over the microgrid and they are hence the common responsibility of all converters. The voltage-quality enhancement consideration should however be more selective since different loads have different sensitivity levels towards voltage disturbances. Converters connected to the more sensitive load buses should therefore be selectively triggered for compensation when voltage unbalances at their protected buses exceed the predefined thresholds. The proposed scheme is therefore different from conventional centralized schemes protecting only a common bus. Simulation and experimental results obtained have verified the effectiveness of the proposed scheme when applied to a four-wire islanded microgrid.