19 resultados para Tyrosine-phosphatase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorylation processes are common post-transductional mechanisms, by which it is possible to modulate a number of metabolic pathways. Proteins are highly sensitive to phosphorylation, which governs many protein-protein interactions. The enzymatic activity of some protein tyrosine-kinases is under tyrosine-phosphorylation control, as well as several transmembrane anion-fluxes and cation exchanges. In addition, phosphorylation reactions are involved in intra and extra-cellular 'cross-talk' processes. Early studies adopted laboratory animals to study these little known phosphorylation processes. The main difficulty encountered with these animal techniques was obtaining sufficient kinase or phosphatase activity suitable for studying the enzymatic process. Large amounts of biological material from organs, such as the liver and spleen were necessary to conduct such work with protein kinases. Subsequent studies revealed the ubiquity and complexity of phosphorylation processes and techniques evolved from early rat studies to the adaptation of more rewarding in vitro models. These involved human erythrocytes, which are a convenient source both for the enzymes, we investigated and for their substrates. This preliminary work facilitated the development of more advanced phosphorylative models that are based on cell lines. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein oxidation is increasingly recognised as an important modulator of biochemical pathways controlling both physiological and pathological processes. While much attention has focused on cysteine modifications in reversible redox signalling, there is increasing evidence that other protein residues are oxidised in vivo with impact on cellular homeostasis and redox signalling pathways. A notable example is tyrosine, which can undergo a number of oxidative post-translational modifications to form 3-hydroxy-tyrosine, tyrosine crosslinks, 3-nitrotyrosine and halogenated tyrosine, with different effects on cellular functions. Tyrosine oxidation has been studied extensively in vitro, and this has generated detailed information about the molecular mechanisms that may occur in vivo. An important aspect of studying tyrosine oxidation both in vitro and in biological systems is the ability to monitor the formation of oxidised derivatives, which depends on a variety of analytical techniques. While antibody-dependent techniques such as ELISAs are commonly used, these have limitations, and more specific assays based on spectroscopic or spectrometric techniques are required to provide information on the exact residues modified and the nature of the modification. These approaches have helped understanding of the consequences of tyrosine oxidation in biological systems, especially its effects on cell signalling and cell dysfunction, linking to roles in disease. There is mounting evidence that tyrosine oxidation processes are important in vivo and can contribute to cellular pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing awareness that inflammatory diseases have an oxidative pathology, which can result in specific oxidation of amino acids within proteins. It is known that patients with inflammatory disease have higher levels of plasma protein nitro-tyrosine than healthy controls. Fibrinogen is an abundant plasma protein, highly susceptible to such oxidative modifications, and is therefore a potential marker for oxidative protein damage. The aim of this study was to map tyrosine nitration in fibrinogen under oxidative conditions and identify susceptible residues. Fibrinogen was oxidised with 0.25mM and 1mM SIN-1, a peroxynitrite generator, and methionine was used to quench excess oxidant in the samples. The carbonyl assay was used to confirm oxidation in the samples. The carbonyl levels were 2.3, 8.72 and 11.5nmol/mg protein in 0, 0.25mM and 1mM SIN-1 samples respectively. The samples were run on a SDS-PAGE gel and tryptically digested before analysis by HPLC MS-MS. All 3 chains of fibrinogen were observed for all treatment conditions. The overall sequence coverage for fibrinogen determined by Mascot was between 60-75%. The oxidised samples showed increases in oxidative modifications in both alpha and beta chains, commonly methionine sulfoxide and tyrosine nitration, correlating with increasing SIN-1 treatment. Tyrosines that were most susceptible were Tyr135 (tryptic peptide YLQEIYNSNNQK) and Tyr277 (tryptic peptide GGSTSYGTGSETESPR), but several other nitrated tyrosines were also identified with high confidence. Identification of these susceptible peptides will allow design of sequences-specific biomarkers of oxidative and nitrative damage to plasma protein in inflammatory conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured.