23 resultados para Two-Fluid Model
Resumo:
The processing conducted by the visual system requires the combination of signals that are detected at different locations in the visual field. The processes by which these signals are combined are explored here using psychophysical experiments and computer modelling. Most of the work presented in this thesis is concerned with the summation of contrast over space at detection threshold. Previous investigations of this sort have been confounded by the inhomogeneity in contrast sensitivity across the visual field. Experiments performed in this thesis find that the decline in log contrast sensitivity with eccentricity is bilinear, with an initial steep fall-off followed by a shallower decline. This decline is scale-invariant for spatial frequencies of 0.7 to 4 c/deg. A detailed map of the inhomogeneity is developed, and applied to area summation experiments both by incorporating it into models of the visual system and by using it to compensate stimuli in order to factor out the effects of the inhomogeneity. The results of these area summation experiments show that the summation of contrast over area is spatially extensive (occurring over 33 stimulus carrier cycles), and that summation behaviour is the same in the fovea, parafovea, and periphery. Summation occurs according to a fourth-root summation rule, consistent with a “noisy energy” model. This work is extended to investigate the visual deficit in amblyopia, finding that area summation is normal in amblyopic observers. Finally, the methods used to study the summation of threshold contrast over area are adapted to investigate the integration of coherent orientation signals in a texture. The results of this study are described by a two-stage model, with a mandatory local combination stage followed by flexible global pooling of these local outputs. In each study, the results suggest a more extensive combination of signals in vision than has been previously understood.
Resumo:
Background To determine the pharmacokinetics (PK) of a new i.v. formulation of paracetamol (Perfalgan) in children ≤15 yr of age. Methods After obtaining written informed consent, children under 16 yr of age were recruited to this study. Blood samples were obtained at 0, 15, 30 min, 1, 2, 4, 6, and 8 h after administration of a weight-dependent dose of i.v. paracetamol. Paracetamol concentration was measured using a validated high-performance liquid chromatographic assay with ultraviolet detection method, with a lower limit of quantification (LLOQ) of 900 pg on column and an intra-day coefficient of variation of 14.3% at the LLOQ. Population PK analysis was performed by non-linear mixed-effect modelling using NONMEM. Results One hundred and fifty-nine blood samples from 33 children aged 1.8–15 yr, weight 13.7–56 kg, were analysed. Data were best described by a two-compartment model. Only body weight as a covariate significantly improved the goodness of fit of the model. The final population models for paracetamol clearance (CL), V1 (central volume of distribution), Q (inter-compartmental clearance), and V2 (peripheral volume of distribution) were: 16.51×(WT/70)0.75, 28.4×(WT/70), 11.32×(WT/70)0.75, and 13.26×(WT/70), respectively (CL, Q in litres per hour, WT in kilograms, and V1 and V2 in litres). Conclusions In children aged 1.8–15 yr, the PK parameters for i.v. paracetamol were not influenced directly by age but were by total body weight and, using allometric size scaling, significantly affected the clearances (CL, Q) and volumes of distribution (V1, V2).
Resumo:
Agitating liquids in unbaffled stirred tank leads to the formation of a vortex in the region of the impeller shaft when operating in the turbulent flow regime. A numerical model is presented here that captures such a vortex. The volume of fluid model, a multiphase flow model was employed in conjunction with a multiple reference frame model and the shear stress turbulence model. The dimensions of the tank considered here, were 0.585 m for the liquid depth and tank diameter with a 0.2925 m diameter impeller at a height of 0.2925 m. The impeller considered was an eight-bladed paddle type agitator that was rotating with an angular velocity of 7.54 rad s (72 rpm) giving a Reynolds number of 10 and Froude number of 0.043. Preliminary results of a second investigation into the effect of liquid phase properties on the vortex formed are also presented. © 2006 Elsevier B.V. All rights reserved.
Resumo:
This study presents the first part of a CFD study on the performance of a downer reactor for biomass pyrolysis. The reactor was equipped with a novel gas-solid separation method, developed by the co-authors from the ICFAR (Canada). The separator, which was designed to allow for fast separation of clean pyrolysis gas, consisted of a cone deflector and a gas exit pipe installed inside the downer reactor. A multi-fluid model (Eulerian-Eulerian) with constitutive relations adopted from the kinetic theory of granular flow was used to simulate the multiphase flow. The effects of the various parameters including operation conditions, separator geometry and particle properties on the overall hydrodynamics and separation efficiency were investigated. The model prediction of the separator efficiency was compared with experimental measurements. The results revealed distinct hydrodynamic features around the cone separator, allowing for up to 100% separation efficiency. The developed model provided a platform for the second part of the study, where the biomass pyrolysis is simulated and the product quality as a function of operating conditions is analyzed. Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.
Resumo:
This paper provides a description of the features and mechanisms of facetted short crack growth in Ni-base superalloys, and briefly reviews existing short crack growth models in terms of their application to Ni-base alloys. The concept of “soft barriers” is introduced to produce a new two-phase model for local microstructural effects on short crack growth in Waspaloy. This is derived from detailed observations of crack growth through individual grains. The model differs from all previous approaches in highlighting the importance of crack path perturbations within grains. Potential applications of the model in alloy development are discussed.
Resumo:
Pre-eclampsia is a vascular disorder of pregnancy where anti-angiogenic factors, systemic inflammation and oxidative stress predominate, but none can claim to cause pre-eclampsia. This review provides an alternative to the 'two-stage model' of pre-eclampsia in which abnormal spiral arteries modification leads to placental hypoxia, oxidative stress and aberrant maternal systemic inflammation. Very high maternal soluble fms-like tyrosine kinase-1 (sFlt-1 also known as sVEGFR) and very low placenta growth factor (PlGF) are unique to pre-eclampsia; however, abnormal spiral arteries and excessive inflammation are also prevalent in other placental disorders. Metaphorically speaking, pregnancy can be viewed as a car with an accelerator and brakes, where inflammation, oxidative stress and an imbalance in the angiogenic milieu act as the 'accelerator'. The 'braking system' includes the protective pathways of haem oxygenase 1 (also referred as Hmox1 or HO-1) and cystathionine-γ-lyase (also known as CSE or Cth), which generate carbon monoxide (CO) and hydrogen sulphide (H2S) respectively. The failure in these pathways (brakes) results in the pregnancy going out of control and the system crashing. Put simply, pre-eclampsia is an accelerator-brake defect disorder. CO and H2S hold great promise because of their unique ability to suppress the anti-angiogenic factors sFlt-1 and soluble endoglin as well as to promote PlGF and endothelial NOS activity. The key to finding a cure lies in the identification of cheap, safe and effective drugs that induce the braking system to keep the pregnancy vehicle on track past the finishing line.
Resumo:
This thesis is concerned with the nature of biomaterial interactions with compromised host tissue sites. Both ocular and dermal tissues can be wounded, following injury, disease or surgery, and consequently require the use of a biomaterial. Clear analogies exist between the cornea/tear film/contact lens and the dermal wound bed/wound fluid/skin adhesive wound dressing. The work described in this thesis builds upon established biochemistry to examine specific aspects of the interaction of biomaterials with compromised ocular and dermal tissue sites, with a particular focus on the role of vitronectin. Vitronectin is a prominent cell adhesion glycoprotein present in both tear fluid and wound fluid, and has a role in the regulation and upregulation of plasmin. The interaction of contact lenses with the cornea was assessed by a novel on-lens cell-based vitronectin assay technique. Vitronectin mapping showed that vitronectin-mediated cell adhesion to contact lens surfaces was due to the contact lens-corneal mechanical interaction rather than deposition out of the tear film. This deposition is associated predominantly with the peripheral region of the posterior contact lens surface. The locus of vitronectin deposition on the contact lens surface, which is affected by material modulus, is potentially an important factor in the generation of plasmin in the posterior tear film. Use of the vitronectin mapping technique on ex vivo bandage contact lenses revealed greater vitronectin-mediated cell adhesion to the contact lens surfaces in comparison to lenses worn in the healthy eye. The results suggest that vitronectin is more readily deposited from the impaired corneal tissue bed than the intact healthy tissue bed. Significantly, subjects with a deficient tear film were found to deposit high vitronectin-mediated cell adhesion levels to the BCL surface, thus highlighting the influence of the contact lens-tissue interaction upon deposition. Biomimetic principles imply that adhesive materials for wound applications, including hydrogels and hydrocolloids, should closely match the surface energy parameters of skin. The surface properties of hydrocolloid adhesives were found to be easily modified by contact with siliconised plastic release liners. In contrast, paper release liners did not significantly affect the adhesive surface properties. In order to characterise such materials in the actual wound environment, which is an extremely challenging task, preliminary considerations for the design of an artificial wound fluid model from an animal serum base were addressed.
Resumo:
Objective: To describe the effect of age and body size on enantiomer selective pharmacokinetic (PK) of intravenous ketorolac in children using a microanalytical assay. Methods: Blood samples were obtained at 0, 15 and 30 min and at 1, 2, 4, 6, 8 and 12 h after a weight-dependent dose of ketorolac. Enantiomer concentration was measured using a liquid chromatography tandem mass spectrometry method. Non-linear mixed-effect modelling was used to assess PK parameters. Key findings: Data from 11 children (1.7–15.6 years, weight 10.7–67.4 kg) were best described by a two-compartment model for R(+), S(−) and racemic ketorolac. Only weight (WT) significantly improved the goodness of fit. The final population models were CL = 1.5 × (WT/46)0.75, V1 = 8.2 × (WT/46), Q = 3.4 × (WT/46)0.75, V2 = 7.9 × (WT/46), CL = 2.98 × (WT/46), V1 = 13.2 × (WT/46), Q = 2.8 × (WT/46)0.75, V2 = 51.5 × (WT/46), and CL = 1.1 × (WT/46)0.75, V1 = 4.9 × (WT/46), Q = 1.7 × (WT/46)0.75 and V2 = 6.3 × (WT/46)for R(+), S(−) and racemic ketorolac. Conclusions: Only body weight influenced the PK parameters for R(+) and S(−) ketorolac. Using allometric size scaling significantly affected the clearances (CL, Q) and volumes of distribution (V1, V2).