23 resultados para Tryptophan
Resumo:
Protein oxidation is thought to contribute to a number of inflammatory diseases, hence the development of sensitive and specific analytical techniques to detect oxidative PTMs (oxPTMs) in biological samples is highly desirable. Precursor ion scanning for fragment ions of oxidized amino acid residues was investigated as a label-free MS approach to mapping specific oxPTMs in a complex mixture of proteins. Using HOCl-oxidized lysozyme as a model system, it was found that the immonium ions of oxidized tyrosine and tryptophan formed in MS(2) analysis could not be used as diagnostic ions, owing to the occurrence of isobaric fragment ions from unmodified peptides. Using a double quadrupole linear ion trap mass spectrometer, precursor ion scanning was combined with detection of MS(3) fragment ions from the immonium ions and collisionally-activated decomposition peptide sequencing to achieve selectivity for the oxPTMs. For chlorotyrosine, the immonium ion at 170.1 m/z fragmented to yield diagnostic ions at 153.1, 134.1, and 125.1 m/z, and the hydroxytyrosine immonium ion at 152.1 m/z gave diagnostic ions at 135.1 and 107.1 m/z. Selective MS(3) fragment ions were also identified for 2-hydroxytryptophan and 5-hydroxytryptophan. The method was used successfully to map these oxPTMs in a mixture of nine proteins that had been treated with HOCl, thereby demonstrating its potential for application to complex biological samples.
Resumo:
It is now recognised that redox control of proteins plays an important role in many signalling pathways both in health and disease. Proteins can undergo a wide variety of oxidative post-translational modifications (oxPTM); while the reversible modifications are thought to be most important in physiological processes, non-reversible oxPTM may contribute to pathological situations and disease. The oxidant is also important in determining the type of oxPTM (chlorination, nitration, etc.), and the susceptibilities of residues vary depending on their structural location. The best characterized oxPTMs involved in signalling modulation are partial oxidations of cysteine to the disulfide, glutathionylated or sulfenic acid forms, but there is increasing evidence that specific oxidations of methionine and tyrosine may have some biological roles. Well understood examples of oxidative regulation include protein tyrosine phosphatases, e.g. PTP1B/C, and members of the MAPK pathways such as MEKK1 and ASK1. Transcription factors such as NFkB and Nrf-2 are also regulated by redox-active cysteines. Improved methods for analysing specific oxPTMs in biological samples are critical for understanding the physiological and pathological roles of these changes, and tandem or MS3 mass spectrometry techniques interfaced with nano-LC separation are being now used. MS3 fragmentation markers for a variety of oxidized residues including tyrosine, tryptophan and proline have been identified, and a precursor ion scanning method that allows the selective identification of these oxPTMs in complex samples has been developed. Such advances in technology offer potential for biomarker development, disease diagnosis and understanding pathology.
Resumo:
Adjuvant arthritis (AA) is a condition that involves systemic oxidative stress. Unexpectedly, it was found that sarcoplasmic reticulum Ca2 +-ATPase (SERCA) activity was elevated in muscles of rats with AA compared to controls, suggesting possible conformational changes in the enzyme. There was no alteration in the nucleotide binding site but rather in the transmembrane domain according to the tryptophan polar/non-polar fluorescence ratio. Higher relative expression of SERCA, higher content of nitrotyrosine but no increase in phospholipid oxidation in AA SR was found. In vitro treatments of SR with HOCl showed that in AA animals SERCA activity was more susceptible to oxidative stress, but SR phospholipids were more resistant and SERCA could also be activated by phosphatidic acid. It was concluded that increased SERCA activity in AA was due to increased levels of SERCA protein and structural changes to the protein, probably induced by direct and specific oxidation involving reactive nitrogen species.
Resumo:
We studied the structural and functional alterations of SERCA in rats suffering from adjuvant arthritis (AA). AA was induced by intradermal administration of Mycobacterium butyricum (MB) to the base of the tail of Lewis rats. Injury of SERCA from skeletal muscles of AA rats was analyzed on days 7, 14, 21 and 28 after MB injection. Neither fragmentation, aggregation of SERCA protein, alterations in SH groups, nor oxidation of phosphatidylcholines and phosphatidylethanolamines in SR vesicles were observed in animals with AA. The only ROS/RNS modification was increased formation of nitrotyrosine. The activity of SERCA from AA animals decreased on day 21 after MB injection and was associated with a significant increase of protein carbonyls in sarcoplasmic reticulum (SR). In contrast, on day 28 an increase of SERCA activity was observed and protein carbonyl level reversed to control level. Concerning kinetic parameters, maximum reaction velocity (Vmax) decrease and increase was observed with respect to both substrates (Ca, ATP) on days 21 and 28, respectively, suggesting possible conformational changes of the enzyme. These changes were not associated with alterations in nucleotide binding site situated in cytosol, but rather with tryptophan fluorescence intensity ratio (cytosol/membrane) related to the transmembrane domain of SERCA. Elevated SERCA activity on day 28 was caused by its higher expression. Acidic phospholipids (PA), probably present in SR of AA rats, may contribute to the elevation of Ca-ATPase activity, as PA administration in vitro increased this activity.
Resumo:
OBJECTIVES: To study possible oxidation of proteins and lipids in plasma and sarcoplasmic reticulum (SR) from skeletal muscles and to assess the effects of pyridoindole antioxidants in rats with adjuvant arthritis (AA) and to analyze modulation of Ca-ATPase activity from SR (SERCA). METHODS: SR was isolated by ultracentrifugation, protein carbonyls in plasma and SR were determined by ELISA. Lipid peroxidation was analyzed by TBARS determination and by mass spectrometry. ATPase activity of SERCA was measured by NADH-coupled enzyme assay. Tryptophan fluorescence was used to analyze conformational alterations. RESULTS: Increase of protein carbonyls and lipid peroxidation was observed in plasma of rats with adjuvant arthritis. Pyridoindole antioxidant stobadine and its methylated derivative SMe1 decreased protein carbonyl formation in plasma, effect of stobadine was significant. Lipid peroxidation of plasma was without any effect of pyridoindole derivatives. Neither protein oxidation nor lipid peroxidation was identified in SR from AA rats. SERCA activity from AA rats increased significantly, stobadine and SMe1 diminished enzyme activity. Ratio of tryptophan fluorescence intensity in SR of AA rats increased and was not influenced by antioxidants. CONCLUSION: Plasma proteins and lipids were oxidatively injured in rats with AA; antioxidants exerted protection only with respect to proteins. In SR, SERCA activity was altered, apparently induced by its conformational changes, as supported by study of tryptophan fluorescence. Stobadine and SMe1 induced a decrease of SERCA activity, elevated in AA rats, but they did not affect conformational changes associated with tryptophan fluorescence.
Resumo:
Protein modifications, including oxidative modifications, glycosylations, and oxidized lipid-protein adducts, are becoming increasingly important as biomarkers and in understanding disease etiology. There has been a great deal of interest in mapping these on Apo B100 from low density lipoprotein (LDL). We have used extracted ion chromatograms of product ions generated using a very narrow mass window from high-resolution tandem mass spectrometric data collected on a rapid scanning quadrupole time-of-flight (QTOF) instrument, to selectively and sensitively detect modified peptides and identify the site and nature of a number of protein modifications in parallel. We have demonstrated the utility of this method by characterizing for the first time oxidized phospholipid adducts to LDL and human serum albumin and for the detection of glycosylation and kynurenin formation from the oxidation of tryptophan residues in LDL. © 2013 American Chemical Society.
Resumo:
Oxidised biomolecules in aged tissue could potentially be used as biomarkers for age-related diseases; however, it is still unclear whether they causatively contribute to ageing or are consequences of the ageing process. To assess the potential of using protein oxidation as markers of ageing, mass spectrometry (MS) was employed for the identification and quantification of oxidative modifications in obese (ob/ob) mice. Lean muscle mass and strength is reduced in obesity, representing a sarcopenic model in which the levels of oxidation can be evaluated for different muscular systems including calcium homeostasis, metabolism and contractility. Several oxidised residues were identified by tandem MS (MS/MS) in both muscle homogenate and isolated sarcoplasmic reticulum (SR), an organelle that regulates intracellular calcium levels in muscle. These modifications include oxidation of methionine, cysteine, tyrosine, and tryptophan in several proteins such as sarcoplasmic reticulum calcium ATPase (SERCA), glycogen phosphorylase, and myosin. Once modifications had been identified, multiple reaction monitoring MS (MRM) was used to quantify the percentage modification of oxidised residues within the samples. Preliminary data suggests proteins in ob/ob mice are more oxidised than the controls. For example SERCA, which constitutes 60-70% of the SR, had approximately a 2-fold increase in cysteine trioxidation of Cys561 in the obese model when compared to the control. Other obese muscle proteins have also shown a similar increase in oxidation for various residues. Further analysis with complex protein mixtures will determine the potential diagnostic use of MRM experiments for analysing protein oxidation in small biological samples such as muscle needle biopsies.
Resumo:
Ageing is a natural phenomenon of the human lifecycle, yet it is still not understood what causes the deterioration of the human body near the end of the lifespan. One popular theory is the Free Radical Theory of Ageing, which proposes that oxidative damage to biomolecules causes ageing of tissues. The ageing population is affected by many chronic diseases. This study focused on sarcopenia (muscle loss in ageing) and obesity as two models for comparison of oxidative damage in muscle proteins in mice. The aim of the study was to develop advanced mass spectrometry methods to detect specific oxidative modifications to mouse muscle proteins, including oxidation, nitration, chlorination, and carbonyl group formation, but western blotting was also used to provide complementary information on the oxidative state of proteins from aged and obese muscle. Mass spectrometry proved to be a powerful tool, enabling identification of the types of modifications present, the sites at which they were present and percentage of the peptide populations that were modified. Targeted and semi-targeted mass spectrometry methods were optimised for the identification and quantitation of the oxidised residues in muscle proteins. The development of the quantitative methods enabled comparisons of mass spectrometry instruments. Both the Time of Flight and QTRAP systems showed advantages of using the different mass analysers to quantify oxidative modifications. Several oxidised residues were characterised and quantified in both the obese and sarcopenic models, and higher levels of oxidation were found compared to their control counterparts. Residues found to be oxidised were oxidation of proline, tyrosine and tryptophan, dioxidation of methionine, allysine and nitration of tyrosine. However quantification was performed on methionine dioxidation and cysteine trioxidation containing residues in SERCA. The combination of measuring residue susceptibility and functional studies could contribute to understanding the overall role of oxidation in ageing and obesity.