24 resultados para Topologies on an arbitrary set
Resumo:
A high sensitivity SRI sensor was fabricated by inscribing an ex-TFG in a thin cladding fiber, achieving enhanced SRI sensitivities of the TM and TE resonance peaks around 1180nm/RIU and 1150nm/RIU at the index of 1.345. © 2014 OSA.
Resumo:
This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool.
Resumo:
This article presents a laser tracker position optimization code based on the tracker uncertainty model developed by the National Physical Laboratory (NPL). The code is able to find the optimal tracker positions for generic measurements involving one or a network of many trackers, and an arbitrary set of targets. The optimization is performed using pattern search or optionally, genetic algorithm (GA) or particle swarm optimization (PSO). Different objective function weightings for the uncertainties of individual points, distance uncertainties between point pairs, and the angular uncertainties between three points can be defined. Constraints for tracker position limits and minimum measurement distances have also been implemented. Furthermore, position optimization taking into account of lines-of-sight (LOS) within complex CAD geometry have also been demonstrated. The code is simple to use and can be a valuable measurement planning tool.
Resumo:
We report a linear response optical refractive index (RI) sensor, which is fabricated based on a micro-channel created within a Fabry Perot (F-P) cavity by chemical etching assisted by femtosecond laser inscription. The experimental results show the F-P resonance peak has a linear response with the RI of medium and the measuring sensitivity is proportion to the length of micro-channel. The sensor with 5 μm -long micro-channel exhibited an RI sensitivity of 1.15nm/RIU and this sensitivity increased to 9.08nm/RIU when widening the micro-channel to 35μm. Furthermore, such micro-channel FP sensors show a much broader RI sensing dynamic range (from 1.3 to 1.7) than other reported optical fiber sensors. © 2012 SPIE.
Resumo:
We present an implementation of the domain-theoretic Picard method for solving initial value problems (IVPs) introduced by Edalat and Pattinson [1]. Compared to Edalat and Pattinson's implementation, our algorithm uses a more efficient arithmetic based on an arbitrary precision floating-point library. Despite the additional overestimations due to floating-point rounding, we obtain a similar bound on the convergence rate of the produced approximations. Moreover, our convergence analysis is detailed enough to allow a static optimisation in the growth of the precision used in successive Picard iterations. Such optimisation greatly improves the efficiency of the solving process. Although a similar optimisation could be performed dynamically without our analysis, a static one gives us a significant advantage: we are able to predict the time it will take the solver to obtain an approximation of a certain (arbitrarily high) quality.
Resumo:
The accurate in silico identification of T-cell epitopes is a critical step in the development of peptide-based vaccines, reagents, and diagnostics. It has a direct impact on the success of subsequent experimental work. Epitopes arise as a consequence of complex proteolytic processing within the cell. Prior to being recognized by T cells, an epitope is presented on the cell surface as a complex with a major histocompatibility complex (MHC) protein. A prerequisite therefore for T-cell recognition is that an epitope is also a good MHC binder. Thus, T-cell epitope prediction overlaps strongly with the prediction of MHC binding. In the present study, we compare discriminant analysis and multiple linear regression as algorithmic engines for the definition of quantitative matrices for binding affinity prediction. We apply these methods to peptides which bind the well-studied human MHC allele HLA-A*0201. A matrix which results from combining results of the two methods proved powerfully predictive under cross-validation. The new matrix was also tested on an external set of 160 binders to HLA-A*0201; it was able to recognize 135 (84%) of them.
Resumo:
The dynamics of on-line learning is investigated for structurally unrealizable tasks in the context of two-layer neural networks with an arbitrary number of hidden neurons. Within a statistical mechanics framework, a closed set of differential equations describing the learning dynamics can be derived, for the general case of unrealizable isotropic tasks. In the asymptotic regime one can solve the dynamics analytically in the limit of large number of hidden neurons, providing an analytical expression for the residual generalization error, the optimal and critical asymptotic training parameters, and the corresponding prefactor of the generalization error decay.
Resumo:
We propose and analyze a first-order optical differentiator based on a fiber Bragg grating (FBG) in transmission. It is shown in the examples that a simple uniform-period FBG in a very strong coupling regime (maximum reflectivity very close to 100%) can perform close to ideal temporal differentiation of the complex envelope of an arbitrary-input optical signal.
Resumo:
Subunit vaccine discovery is an accepted clinical priority. The empirical approach is time- and labor-consuming and can often end in failure. Rational information-driven approaches can overcome these limitations in a fast and efficient manner. However, informatics solutions require reliable algorithms for antigen identification. All known algorithms use sequence similarity to identify antigens. However, antigenicity may be encoded subtly in a sequence and may not be directly identifiable by sequence alignment. We propose a new alignment-independent method for antigen recognition based on the principal chemical properties of protein amino acid sequences. The method is tested by cross-validation on a training set of bacterial antigens and external validation on a test set of known antigens. The prediction accuracy is 83% for the cross-validation and 80% for the external test set. Our approach is accurate and robust, and provides a potent tool for the in silico discovery of medically relevant subunit vaccines.