45 resultados para Time varying control systems
Resumo:
This research explores the links between the strategies adopted by companies and the mechanisms used to control the organisation. This is not seen as a one way process with the control system following from the strategy but rather as an interactive process between the control systems, the environment and the business strategy. The main proposition of the research, derived from a review of the relevant literature, is that the dimensions of Business Pro-Activity and Environmental Change provide a plausible explanation of the reasons why companies need to adopt different strategies in order to be successful in different markets. A model is proposed which links these dimensions with the business strategy, organisational structure, strategic planning system and management control systems. The model is used as a framework for analysing four companies in order to further our understanding of these interactions and the mechanisms which act to both promote and resist change. Whilst it is not suggested that the model in its present form is a perfect instrument it has, during the course of this research, proved to be an appropriate framework for analysing the various mechanisms used by four companies to formulate and implement their strategies. The research reveals that these should not be viewed independently but as a balanced system.
Resumo:
Computerised production control developments have concentrated on Manufacturing Resources Planning (MRP II) systems. The literature suggests however, that despite the massive investment in hardware, software and management education, successful implementation of such systems in manufacturing industries has proved difficult. This thesis reviews the development of production planning and control systems, in particular, investigates the causes of failures in implementing MRP/MRP II systems in industrial environments and argues that the centralised and top-down planning structure, as well as the routine operational methodology of such systems, is inherently prone to failure. The thesis reviews the control benefits of cellular manufacturing systems but concludes that in more dynamic manufacturing environments, techniques such as Kanban are inappropriate. The basic shortcomings of MRP II systems are highlighted and a new enhanced operational methodology based on distributed planning and control principles is introduced. Distributed Manufacturing Resources Planning (DMRP), was developed as a capacity sensitive production planning and control solution for cellular manufacturing environments. The system utilises cell based, independently operated MRP II systems, integrated into a plant-wide control system through a Local Area Network. The potential benefits of adopting the system in industrial environments is discussed and the results of computer simulation experiments to compare the performance of the DMRP system against the conventional MRP II systems presented. DMRP methodology is shown to offer significant potential advantages which include ease of implementation, cost effectiveness, capacity sensitivity, shorter manufacturing lead times, lower working in progress levels and improved customer service.
Resumo:
This thesis deals with the problems associated with the planning and control of production, with particular reference to a small aluminium die casting company. The main problem areas were identified as: (a) A need to be able to forecast the customers demands upon the company's facilities. (b) A need to produce a manufacturing programme in which the output of the foundry (or die casting section) was balanced with the available capacity in the machine shop. (c) The need to ensure that the resultant system enabled the company's operating budget to have a reasonable chance of being achieved. At the commencement of the research work the major customers were members of the automobile industry and had their own system of forecasting, from which they issued manufacturing schedules to their component suppliers, The errors in the forecast were analysed and the distributions noted. Using these distributions the customer's forecast was capable of being modified to enable his final demand to be met with a known degree of confidence. Before a manufacturing programme could be developed the actual manufacturing system had to be reviewed and it was found that as with many small companies there was a remarkable lack of formal control and written data. Relevant data with regards to the component and the manufacturing process had therefore to be collected and analysed. The foundry process was fixed but the secondary machining operations were analysed by a technique similar to Component Flow Analysis and as a result the machines were arranged in a series of flow lines. A system of manual production control was proposed and for comparison, a local computer bureau was approached and a system proposed incorporating the production of additional management information. These systems are compared and the relative merits discussed and a proposal made for implementation.
Resumo:
Manufacturing planning and control systems are fundamental to the successful operations of a manufacturing organisation. 10 order to improve their business performance, significant investment is made by companies into planning and control systems; however, not all companies realise the benefits sought Many companies continue to suffer from high levels of inventory, shortages, obsolete parts, poor resource utilisation and poor delivery performance. This thesis argues that the fit between the planning and control system and the manufacturing organisation is a crucial element of success. The design of appropriate control systems is, therefore, important. The different approaches to the design of manufacturing planning and control systems are investigated. It is concluded that there is no provision within these design methodologies to properly assess the impact of a proposed design on the manufacturing facility. Consequently, an understanding of how a new (or modified) planning and control system will perform in the context of the complete manufacturing system is unlikely to be gained until after the system has been implemented and is running. There are many modelling techniques available, however discrete-event simulation is unique in its ability to model the complex dynamics inherent in manufacturing systems, of which the planning and control system is an integral component. The existing application of simulation to manufacturing control system issues is limited: although operational issues are addressed, application to the more fundamental design of control systems is rarely, if at all, considered. The lack of a suitable simulation-based modelling tool does not help matters. The requirements of a simulation tool capable of modelling a host of different planning and control systems is presented. It is argued that only through the application of object-oriented principles can these extensive requirements be achieved. This thesis reports on the development of an extensible class library called WBS/Control, which is based on object-oriented principles and discrete-event simulation. The functionality, both current and future, offered by WBS/Control means that different planning and control systems can be modelled: not only the more standard implementations but also hybrid systems and new designs. The flexibility implicit in the development of WBS/Control supports its application to design and operational issues. WBS/Control wholly integrates with an existing manufacturing simulator to provide a more complete modelling environment.
Resumo:
Are persistent marketing effects most likely to appear right after the introduction of a product? The authors give an affirmative answer to this question by developing a model that explicitly reports how persistent and transient marketing effects evolve over time. The proposed model provides managers with a valuable tool to evaluate their allocation of marketing expenditures over time. An application of the model to many pharmaceutical products, estimated through (exact initial) Kalman filtering, indicates that both persistent and transient effects occur predominantly immediately after a brand's introduction. Subsequently, the size of the effects declines. The authors theoretically and empirically compare their methodology with methodology based on unit root testing and demonstrate that the need for unit root tests creates difficulties in applying conventional persistence modeling. The authors recommend that marketing models should either accommodate persistent effects that change over time or be applied to mature brands or limited time windows only.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This paper aims to help supply chain managers to determine the value of retailer-supplier partnership initiatives beyond information sharing (IS) according to their specific business environment under time-varying demand conditions. For this purpose, we use integer linear programming models to quantify the benefits that can be accrued by a retailer, a supplier and system as a whole from shift in inventory ownership and shift in decision-making power with that of IS. The results of a detailed numerical study pertaining to static time horizon reveal that the shift in inventory ownership provides system-wide cost benefits in specific settings. Particularly, when it induces the retailer to order larger quantities and the supplier also prefers such orders due to significantly high setup and shipment costs. We observe that the relative benefits of shift in decision-making power are always higher than the shift in inventory ownership under all the conditions. The value of the shift in decision-making power is greater than IS particularly when the variability of underlying demand is low and time-dependent variation in production cost is high. However, when the shipment cost is negligible and order issuing efficiency of the supplier is low, the cost benefits of shift in decision-making power beyond IS are not significant. © 2012 Taylor & Francis.
Resumo:
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.
Resumo:
We examine how the most prevalent stochastic properties of key financial time series have been affected during the recent financial crises. In particular we focus on changes associated with the remarkable economic events of the last two decades in the volatility dynamics, including the underlying volatility persistence and volatility spillover structure. Using daily data from several key stock market indices, the results of our bivariate GARCH models show the existence of time varying correlations as well as time varying shock and volatility spillovers between the returns of FTSE and DAX, and those of NIKKEI and Hang Seng, which became more prominent during the recent financial crisis. Our theoretical considerations on the time varying model which provides the platform upon which we integrate our multifaceted empirical approaches are also of independent interest. In particular, we provide the general solution for time varying asymmetric GARCH specifications, which is a long standing research topic. This enables us to characterize these models by deriving, first, their multistep ahead predictors, second, the first two time varying unconditional moments, and third, their covariance structure.
Resumo:
Modern advances in technology have led to more complex manufacturing processes whose success centres on the ability to control these processes with a very high level of accuracy. Plant complexity inevitably leads to poor models that exhibit a high degree of parametric or functional uncertainty. The situation becomes even more complex if the plant to be controlled is characterised by a multivalued function or even if it exhibits a number of modes of behaviour during its operation. Since an intelligent controller is expected to operate and guarantee the best performance where complexity and uncertainty coexist and interact, control engineers and theorists have recently developed new control techniques under the framework of intelligent control to enhance the performance of the controller for more complex and uncertain plants. These techniques are based on incorporating model uncertainty. The newly developed control algorithms for incorporating model uncertainty are proven to give more accurate control results under uncertain conditions. In this paper, we survey some approaches that appear to be promising for enhancing the performance of intelligent control systems in the face of higher levels of complexity and uncertainty.