22 resultados para Time of flight mass spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of lipids is important in many pathological conditions and lipid peroxidation products such as 4-hydroxynonenal (HNE) and other aldehydes are commonly measured as biomarkers of oxidative stress. However, it is often useful to complement this with analysis of the original oxidized phospholipid. Electrospray mass spectrometry (ESMS) provides an informative method for detecting oxidative alterations to phospholipids, and has been used to investigate oxidative damage to cells, and low-density lipoprotein, as well as for the analysis of oxidized phosphatidylcholines present in atherosclerotic plaque material. There is increasing evidence that intact oxidized phospholipids have biological effects; in particular, oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycerophosphocholine (PAPC) have been found to cause inflammatory responses, which could be potentially important in the progression of atherosclerosis. The effects of chlorohydrin derivatives of lipids have been much less studied, but it is clear that free fatty acid chlorohydrins and phosphatidylcholine chlorohydrins are toxic to cells at concentrations above 10 micromolar, a range comparable to that of HNE and oxidized PAPC. There is some evidence that chlorohydrins have biological effects that may be relevant to atherosclerosis, but further work is needed to elucidate their pro-inflammatory properties, and to understand the mechanisms and balance of biological effects that could result from oxidation of complex mixtures of lipids in a pathophysiological situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soft ionization methods for the introduction of labile biomolecules into a mass spectrometer are of fundamental importance to biomolecular analysis. Previously, electrospray ionization (ESI) and matrix assisted laser desorption-ionization (MALDI) have been the main ionization methods used. Surface acoustic wave nebulization (SAWN) is a new technique that has been demonstrated to deposit less energy into ions upon ion formation and transfer for detection than other methods for sample introduction into a mass spectrometer (MS). Here we report the optimization and use of SAWN as a nebulization technique for the introduction of samples from a low flow of liquid, and the interfacing of SAWN with liquid chromatographic separation (LC) for the analysis of a protein digest. This demonstrates that SAWN can be a viable, low-energy alternative to ESI for the LC-MS analysis of proteomic samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sucrose is used as a cryo-preservation agent on large mammalian eyes post formalin fixation and is shown to reduce freezing artefacts allowing the collection of 12-μm thick sections from these large aqueous samples. The suitability of this technique for use in MALDI imaging experiments is demonstrated by the acquisition of the first images of lipid distributions within whole sagittal porcine eye sections. © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redox regulation of signalling pathways is critical in proliferation and apoptosis; redox imbalance can lead to pathologies such as inflammation and cancer. Vaccinia H1-related protein (VHR; DUSP3) is a dual-specificity phosphatase important in controlling MAP kinase activity during cell cycle. the active-site motif contains a cysteine that acts as a nucleophile during catalysis. We used VHR to investigate the effect of oxidation in vitro on phosphatase activity, with the aim of determining how the profile of site-specific modification related to catalytic activity. Recombinant human VHR was expressed in E. coli and purified using a GST-tag. Protein was subjected to oxidation with various concentrations of SIN-1 or tetranitromethane (TNM) as nitrating agents, or HOCl. the activity was assayed using either 3-O-methylfluorescein phosphate with fluorescence detection or PIP3 by phosphate release with malachite green. the sites of oxidation were mapped using HPLC coupled to tandem mass spectrometry on an ABSciex 5600TripleTOF following in-gel digestion. More than 25 different concentration-dependent oxidative modifications to the protein were detected, including oxidations of methionine, cysteine, histidine, lysine, proline and tyrosine, and the % oxidized peptide (versus unmodified peptide) was determined from the extracted ion chromatograms. Unsurprisingly, methionine residues were very susceptible to oxidation, but there was a significant different in the extent of their oxidation. Similarly, tyrosine residues varied greatly in their modifications: Y85 and Y138 were readily nitrated, whereas Y38, Y78 and Y101 showed little modification. Y138 must be phosphorylated for MAPK phosphatase activity, so this susceptibility impacts on signalling pathways. Di- and tri- oxidations of cysteine residues were observed, but did not correlate directly with loss of activity. Overall, the catalytic activity did not correlate with redox state of any individual residue, but the total oxidative load correlated with treatment concentration and activity. This study provides the first comprehensive analysis of oxidation modifications of VHR, and demonstrates both heterogenous oxidant effects and differential residue susceptibility in a signalling phosphatase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative post-translational modifications (oxPTMs) can alter the function of proteins, and are important in the redox regulation of cell behaviour. The most informative technique to detect and locate oxPTMs within proteins is mass spectrometry (MS). However, proteomic MS data are usually searched against theoretical databases using statistical search engines, and the occurrence of unspecified or multiple modifications, or other unexpected features, can lead to failure to detect the modifications and erroneous identifications of oxPTMs. We have developed a new approach for mining data from accurate mass instruments that allows multiple modifications to be examined. Accurate mass extracted ion chromatograms (XIC) for specific reporter ions from peptides containing oxPTMs were generated from standard LC-MSMS data acquired on a rapid-scanning high-resolution mass spectrometer (ABSciex 5600 Triple TOF). The method was tested using proteins from human plasma or isolated LDL. A variety of modifications including chlorotyrosine, nitrotyrosine, kynurenine, oxidation of lysine, and oxidized phospholipid adducts were detected. For example, the use of a reporter ion at 184.074 Da/e, corresponding to phosphocholine, was used to identify for the first time intact oxidized phosphatidylcholine adducts on LDL. In all cases the modifications were confirmed by manual sequencing. ApoB-100 containing oxidized lipid adducts was detected even in healthy human samples, as well as LDL from patients with chronic kidney disease. The accurate mass XIC method gave a lower false positive rate than normal database searching using statistical search engines, and identified more oxidatively modified peptides. A major advantage was that additional modifications could be searched after data collection, and multiple modifications on a single peptide identified. The oxPTMs present on albumin and ApoB-100 have potential as indicators of oxidative damage in ageing or inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research described in this PhD thesis focuses on proteomics approaches to study the effect of oxidation on the modification status and protein-protein interactions of PTEN, a redox-sensitive phosphatase involved in a number of cellular processes including metabolism, apoptosis, cell proliferation, and survival. While direct evidence of a redox regulation of PTEN and its downstream signaling has been reported, the effect of cellular oxidative stress or direct PTEN oxidation on PTEN structure and interactome is still poorly defined. In a first study, GST-tagged PTEN was directly oxidized over a range of hypochlorous acid (HOCl) concentration, assayed for phosphatase activity, and oxidative post-translational modifications (oxPTMs) were quantified using LC-MS/MS-based label-free methods. In a second study, GSTtagged PTEN was prepared in a reduced and reversibly H2O2-oxidized form, immobilized on a resin support and incubated with HCT116 cell lysate to capture PTEN interacting proteins, which were analyzed by LC-MS/MS and comparatively quantified using label-free methods. In parallel experiments, HCT116 cells transfected with a GFP-tagged PTEN were treated with H2O2 and PTENinteracting proteins immunoprecipitated using standard methods. Several high abundance HOCl-induced oxPTMs were mapped, including those taking place at amino acids known to be important for PTEN phosphatase activity and protein-protein interactions, such as Met35, Tyr155, Tyr240 and Tyr315. A PTEN redox interactome was also characterized, which identified a number of PTEN-interacting proteins that vary with the reversible inactivation of PTEN caused by H2O2 oxidation. These included new PTEN interactors as well as the redox proteins peroxiredoxin-1 (Prdx1) and thioredoxin (Trx), which are known to be involved in the recycling of PTEN active site following H2O2-induced reversible inactivation. The results suggest that the oxidative modification of PTEN causes functional alterations in PTEN structure and interactome, with fundamental implications for the PTEN signaling role in many cellular processes, such as those involved in the pathophysiology of disease and ageing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ageing is a natural phenomenon of the human lifecycle, yet it is still not understood what causes the deterioration of the human body near the end of the lifespan. One popular theory is the Free Radical Theory of Ageing, which proposes that oxidative damage to biomolecules causes ageing of tissues. The ageing population is affected by many chronic diseases. This study focused on sarcopenia (muscle loss in ageing) and obesity as two models for comparison of oxidative damage in muscle proteins in mice. The aim of the study was to develop advanced mass spectrometry methods to detect specific oxidative modifications to mouse muscle proteins, including oxidation, nitration, chlorination, and carbonyl group formation, but western blotting was also used to provide complementary information on the oxidative state of proteins from aged and obese muscle. Mass spectrometry proved to be a powerful tool, enabling identification of the types of modifications present, the sites at which they were present and percentage of the peptide populations that were modified. Targeted and semi-targeted mass spectrometry methods were optimised for the identification and quantitation of the oxidised residues in muscle proteins. The development of the quantitative methods enabled comparisons of mass spectrometry instruments. Both the Time of Flight and QTRAP systems showed advantages of using the different mass analysers to quantify oxidative modifications. Several oxidised residues were characterised and quantified in both the obese and sarcopenic models, and higher levels of oxidation were found compared to their control counterparts. Residues found to be oxidised were oxidation of proline, tyrosine and tryptophan, dioxidation of methionine, allysine and nitration of tyrosine. However quantification was performed on methionine dioxidation and cysteine trioxidation containing residues in SERCA. The combination of measuring residue susceptibility and functional studies could contribute to understanding the overall role of oxidation in ageing and obesity.